Final Report

00 AR

 PB99-169286 .

CENTRIFUGAL NUMERICAL EVALUATION OF
PRELOADING ON POLK COUNTY PARKWAY

DR. MICHAEL C. M°VAY  PRINCIPAL INVESTIGATOR

ZAFAR AHMED  GRADUATE STUDENT

WPI No.: 0510752
STATE No.:  99700-3333-119
CONTRACT No.:  B-9900
UF PROJECT NO.:  4910-4504-527-12

DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF FLORIDA
P.O. Box 116580
GAINESVILLE, FLORIDA 32611-6580

SUBMITTED TO:

FLORIDA DEPARTMENT OF TRANSPORTATION

AUGUST 1999

REPRODUCED BY: NTIS.

U.S. Department of Commerce —
i ical ion Service

Springfield, Virginia 22161







DISCLAIMER

“The opinions, findings and conclusions expressed in this pub-
lication are those of the authors and not necessarily those of
the Florida Department of Transportation or the U.S. Depart-

ment of Transportation.

Prepared in cooperation with the State of Florida department
of Transportation and the U.S. Department of Transporta-

tion.”

PROTECTED UNDER INTERNATIONAL COPYRIGHT
ALL RIGHTS RESERVED.

NATIONAL TECHNICAL INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE






(Z661 1snbny pesirey)

'08€3 WLSY Jo v uonoag Yum Ajdwioo 0} apew eq pinoys Buipunos
ejenrdorddy spun jo waysAs feuoneussiul 8y} Joj joquihs eyl si iS .,

yous asenbs youi aienbs
isd Jad aassojpunod Syl0 sjeosedoy ed)y edy s|eosedopy 68'9 1ad asiojpunod isd
19] aolojpunod GZZ'0 sSuUoMau N N suomau Sty aoiojpunod 191
SSIULS 10 JHYNSSIHd PUB IDHOJ SSIYLS 10 JHNSSTHd Pue IDHOA
i spyaque-jooj 61620 ul/e|spuea  wypd i ,W/p2 w/eppued 9zyv'e sysquieT-joo} !
9} $3|pued-}00j 6260°0 xn X X xn| 9.0} $3jpued-j00j 9}
NOILVYNIWNTI NOILLYNIWNTTI
ainjesadwia) ainesadwa) aimesadwa) g 1/(zg-4) 10 ainjesadwia)
do yayuamed Zg +08°1 SNRD Do Do snI’Y 6/(ze-2)s Jayuaiye E N
(oexa) ainjeiadius | (ioexa) ainjeiaduia |
L (910002) suoj poys ] M1 sweibebaw b 6N sweibebow L06'0 (a1 0002) suoy poys 1
qj spunod 2022 swiesboyn| By 63 swielbojy S0 spunod ql
20 $Saouno G£0'0 swelb B 6 swe.lb g8 $303UNO 20
SSYN SSYWW
"W U umMoys aq fleys | 000 Ueys JajesiBb sawinjop 310N
PA spieA oigno 10S°1L sJajaw oIqno s S siajaw 2i1gnd G9.2'0 spJeA 21gno PA
AT 139} 01gno 12°6¢ S19)3W 2IGN2 Ju T sJajaw o1gno 8200 193} 21gno M
|eb suojjeb ¥92'0 s1a)y | i s1ay) G8.L'E suoje  jeb
zo | $32UNno piny ¥€0'0 sRpw jw ju SIaNfIwW 1562 sadunopiny  zo jj
JNNTOA FWNNTOA
Jw sajiw asenbs 98¢0 sisjawopy alenbs  wy R sanawojy asenbs 652 sajlw asenbs A
oe saloe e sale)oay ey ey salejoay SOV 0 sajoe oe
PA spJek aienbs 611 si1a)aws ajenbs L LA s1ajaw ajenbs 9¢8°0 spieA ajenbs PA
M o3} asenbs +97°01 sIa)awi ajenbs L LA si1ajow alenbs €600 199} alenbs M
Ul sayoul ajenbs Q1000 siejeuniw asenbs  ww Auw  sisjawiw alenbs ZSy9 sayoul arenbs Al
V3dVv LER
w sajiw 1290 s13jawopy wy wy slsjowiopy 19°1 sajiw w
pA spieA 601 sJajow w w S ENT Y160 spieA pA
1| ELY] 9Z'¢ si191oW w w B ETN G0E0 103} Y
ul sayou| 6£0°0 SR ETIT ww ww si3jRWIIWw 62 sayoul ul
H1ON31 H19N31
loquiAg pujol AgAldainy  mou) nox uaypp joquiAs i [oquiAs pujol AgAdunjy  mouy noA Uaym  joquiAs
S1INMN IS WO¥4 SNOISYIANOD J1LVINIXOHddY S1INN IS OL SNOISYIANOD I LVNIXOUddY
SHOLOV4 NOISY3ANOD (DIMLIW NY¥3AOW) .IS







Technical Report Documentation Page

1. Report No. 2. Government Accession No.

WPI # 0510752

3. Recipient's Catalog No.

4. Title and Subtitie

Centrifugal Numerical Evaluation of Pfeloading on Polk County Parkway

S. Report Dats

June 1999

6. Performing Organization Code

7. Author(s)

M. C. M*Vay, Principal Investigator; Zafar Ahmed, Graduate Assistant

8. Performing Organization Report No.

4910-4504-527-12

9. Performing Orgamizaton Name and Address
University of Florida
Department of Civil Engineering
345 Weil Hall / P. O. Box 116580
Gainesviile, FL. 32611-6580

10.  Work Unit No. (TRAIS)

99700-3333-119

11, Contract or Grant No.

B-9900

12. Sponsonng Agency Name and Address
Florida Department of Transportation
Research Management Center
605 Suwannee Street, MS 30
Tallahassee, FL 32399-0450

13, Type of Report and Perod Covered

Draft Final Report
8/15/95 - 5/31/99

14. Sponsonng Agency Code

99700-3333-119

15. Suppiementary Notes

Prepared in cooperation with the Federal Highway Administration

16.  Abstract

A mathematical framework for large strain consolidation of fully saturated soil media
is presented in this report. The algorithmic treatment of large strain response of the solid
phase is based on multiplicative decomposition of deformation gradient and is coupled with
the algorithm of fluid flow via the Kirchhoff pore water pressure. Balance laws are written
for the soil-water mixture following the motion of the soil matrix alone.

Two different constitutive relations (elastoplastic and viscoplastic) based on modified
Cam-Clay (MCC) model of critical state soil mechanics are formulated in this report to

represent the nonlinear responses of the solid phase.

Proposed mathematical model! is linearized to obtain consistent tangent operators and
subsequently implemented in a displacement-based finite element code PlasFEM, developed
by the Geotechnical Engineering group at the University of Florida. Numerical prediction of
primary (consolidation and swell) and secondary (creep) consolidation settlement of
phosphatic waste clay, found at the construction site Polk County Expressway, in the
presence of vertical wick drains subject to surcharge loading, unloading and subsequent
reloading (i.e. road construction) is conducted using PlasFEM. Simulation results showed a

very good agreement with the field measurements.

17. Key Words

18. Distribution Statement

No restrictions. This document is available to the public
through the National Technical Information Service,
Springfield, VA, 22161

19. Secunty Classif. (of thus reporn)

Unclassified

20. Secunty Classd. (of this page)

Unclassified

21. No. of Pages 2. Price

188

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized







TABLE OF CONTENTS
page
B A0 T VN 2 ) 0 X S PP \'%
LIST OF FIGURES .. iriiiiititt ettt ettt ettt eaae s eaaenasssnssreeaneesaatanteeanneninss vii
CHAPTERS
1 INTRODUCTION ..ottt eiee et etseeaneaaiaetaretataenseaneraaessanenreaasennes 1
I D £ (3 0 T 13 1oy 10 + NP O U 1
1.2 ReSEArCh FOCUS ..oiuutiiiitt ittt eiiitieneetiite ittt tiaesternsaneernasesnans 2
1.3 Scope of WOrK ...c.vviiniiniiiiiiii e 5
2 LITERATURE REVIEW ..oooiiiitiittiieeeaeeeatteenresessanteestsinnsisssrsenssrensne 7
D1 CONSOMAATION .. uvtien et ettt eeentaesarreeaaneeeeaneesanaeetissneeessnnsesanmnereons 7
2.2 Large Strain Multiplicative Plasticity ............ccoooiiiiiiiiii. 9
3 THEORY OF MIXTURES ...oitiiittiiiiiiaiiiaieneraetisiitiieernaaesannnareeonsanees 12
3.1 Basic ThEOTY «.ovuveeninenieiiiniit ittt sttt s 12
3.2 KIIEIMATICS e vuuneeneenntenneeeneeaariaseeasiaesseesnnsssreennasnsnroneesasssiinenns 12
3.3 Average QUAantities ..........ovieieiniiiiini 15
3.4 Balance Laws .ooviinuiieiiiitiaieeiiiteae et tiaeraie et 17
341 Balance Of Mass ....ovvviivrrreireerreermaetetiosssnnssneetneencssesiesnsns 18
3.4.2 Balance of Linear MOMENTUIT ....oovvvriireeiiniiirirseeennreeeaunnisonn 19
3.4.3 Balance of Angular Momentum .........c.coeeiiniiiiiiiiiiii 20
3.44 Balance Of ENEIgY ....ocvovveinininiiiiniiiiimeee et eneianineeees 21
3.4.5 Entropy Inequality ........cooooiriiiiiimiii 23
3.5 Balance Laws for Saturated SOil .....ccooivviiiiiiiiiii 25
3.5.1 Balance Of Mass ..c.evvruieeieriareaneerantioneiinneennsasnesiiseeinseinnasns 25
3.5.2 Balance of Linear MOMENTUIN ....coouvvinriiniinineiannenneciinennsenanns 25
3.5.3 Balance of ENEIZY ..c.covvnininiiniiiiiiiiiiiiii it 29
3.5.4 Entropy Inequality .........coooiiiiiiiiiiiiiii 32
4 VARIATIONAL EQUATIONS, CONSTITUTIVE THEORIES ................cee. 34
4.1 Boundary Value Problem............cooevviiiiiiiiiiiiniis 34
i






42 Srong FOIM ....ouuinieieiiiiiiiii e 35
4.3 Weak FOTI ...uviitiiiti it et e ea e s 37
4.4 Time Descretization SCheme ........c..ooviiiiiiiiiiiiiiiii e 39
4.5 Large Deformation Plasticity Model for Soil Skeleton ......................... 42
4.6 Constitutive Law for Fluid Flow ... 49
4.7  Definitions of Strains .......coveeciiiiiitiiiiiiiiiiiiii i 50
HYPERELASTIC-PLASTIC MCCMODEL ........ccoioiiiiiiiiiiiiiiiiiniie 52
5.1  INtrodUCHON . .oviiieiieiit ittt e e e e 52
5.2 Hyperelastic Model ........c.coouiiiiiiiiiii 53
5.3  Plasticity Model .....c..coiiiiiiii 57
54  Hardening LaW........ccooiiiiiiiiiiiiiiii 58
5.5  FIOW RUIE .oiirinititiiiit e e 62
5.6  Consistent Tangent Moduli ...........oooviiiiii 64
HYPERELASTIC-VISCOPLASTIC MCC MODEL ........cccoiiviiiiiiiiiineee 70
6.1  INtrodUCHON ..vuv'eineniieir ettt r e e r e s es 70
6.2  FIOW RUIE ettt e e 71
6.3 Consistent Tangent Moduli ..........cocooiiiiiiiiin 74
LINEARIZATION ...uiuiitiniiitieiiet et eiiieseteeetansneneaasnesstsneaeaes 77
7.1 PreliMinaries ......ooevereerieneeineaeatiitintiire et iieraterrieareaaeeatee s 77
7.2  Linearization of Strong Form ... 78
7.2.1 Equation of Equilibrium..........coooiiiiiiii 79
7.2.2 Equation of Flow Continuity ...........ccooveviiiiiiiin 82

7.3 Linearization of Weak FOIm ...c.oooviiiiiiiiiii e 86
FINITE ELEMENT FORMULATION .....cciiiiiiiiiiiiiiiiiiieinenensnieiens 89
8.1 Finite Element Framework ........c..cooiiiiiiiiiiiiii 89
8.2 Matrix EQUAtIONS .....vuvvniiiiitiiieieiniein et 90
CENTRIFUGE MODELING ......cotiuiititieiniiititiinriaieeeseeceiiieananss 98
9.1 University of Florida Centrifuge Equipment .............cooiieeiiininnnnn. 97
9.2  Centrifuge TeStNg ........covveriiriirniiiiiiiiiii e 102
9.3 Modeling of Models ..........ooiiiiiiiiiiiiiiiiii 103
9.4 Centrifuge Test ReSUIS ......oovviiiiiiiiiiii e 110
10 NUMERICAL EXAMPLES ...\ttt nesesnnaseneeens 114

i






10.1 Mixed Element ......cooiviniiniieiiiieiiiiiii i eeeeane s 114
10.2 One-dimensional Hyperelastic Consolidation...................coovinn. 115
10.3 Plane Strain Hyperelastic Consolidation...................ccocviiiiinne, 121
11 POLK COUNTY EXPRESSWAY ..ottt e 109
11.1 Phosphatic Waste Clay ..........ccccoviiiiininiiiiiiiinin e, 126
11.2 Wick Drain and Instrumentation ............cc.covviiiiiiiiiiinniin .. 133
11.3 Constitutive Model Parameters ..............ccooiiiiiiiiiiiin, 135
114 FEMeESh coonviriiiiiie e e e e e 146
11.5 Prediction of Primary Consolidation ............cccoooviviiiiinininnnn., 149
11.6 Prediction of Secondary Consolidation .............cooevviiiiiiiiiiiii.. 157
12 SUMM A RY eitiiiititi it e et et e e e e e et e aea e e e e bt n e 162
APPENDICES
A MATHEMATICAL DERIVATIONS ..ottt e 166
A.1 Gradient of the Jacobian, J......coovviniiiiiiiiiiiiiiiic i 167
A.2 Balance of Energy of Saturated Soil .............coooiiii 167
A3 Weak Form of DIVP + 08 =0 o.ovvveeriiiiiieeieieie e 168
A4 Weak Fromof divv+divV =0 ....cccooiiiiiiiiiiiiiiiiiiiiiinas 169
A.5 Area Transformation of Flow Rate ............cooooviiiiiiiiiiinininnn, 170
A.6 Additive Decomposition of Principal Natural Strain ......................... 171
A.7 Proof of PiolaIdentity: DIVY =Jdivy ....oooooiiiiiii 172
A.8 Linearization of F, F'' ..ottt 173
A9  Linearization 0f J, J ovovuririieiiii e 174
A.10 Linearization 0f Pg ....oeeveeieieitiiiiiii i 175
A.11 Relation between Tensors Aand D ............ooiiiiiiii s 175
A.12 Relation between Tensorsaand d ...........ocovvviiiiiiiiiiiieniniennn 176
A.13 Spectral Decomposition of b, C .........c.cooiiiiiii 176
A.14 Derivation 0f GA/0C ..nvvviiinei i it e rres e e 179
A.15 Derivation of IM®™/AC .....ccvviviiiieiieeeiii e 179
A.16 Push Forward of IM®W/AC ......ccuvviiiveiiiiiieiiiii e 181
A.17 Variation of K, K oo ovviniiniiiii e 183
A.18 Variation of @rad © ......cccooiiiiiiiiiiii 184
A.19 Variation of JV .oueiiiiiiii i it 184
A.20 Variation of @rad 1: T ..cooiniiiiiiiiii 185
A.21 Variation of GRAD M P oo 187
A.22 Variation of grady - JV ... 188
A.23 Variation of GRADW -V ...iiiiiiiiiiiiiiieee e 190

A.24 Hand Calculation of One-dimensional Large Strain,

iii






Hyperelastic Conselidation ...........cocoiviiiniiiiniieninininnnn

B FINITE ELEMENT MATRICES ...

C LABORATORY CONSOLIDATION TESTDATA ...

REFERENCES

....................................................................................

iv






LIST OF TABLES

Table

4.1 Genearlized trapezoidal method ...............c.oooiiiiin,
9.1  Centrifuge Specifications ...........ccceeeeviviiiiiiiiiiinii.

9.2  Modeling of model results ............cooveiiiiiiiiiin

9.3  Time scaling exponents x for different

Percentage of settlement ...............ccooiviiiii,

11.1 Summary of laboratory consolidation test results

(initial exploration) ..........cccovviiiiiiiiiiiiiiiiiii

11.2  Summary of laboratory consolidation test results

(later exploration) ...........coceviiiiiiiiiiiiiiiii

11.3  Hyperelastic-plastic MCC model parameters for large

strain simulation of laboratory consolidation tests .........

11.4 Hyperelastic-plastic MCC model parameters for small

strain simulation of laboratory consolidation tests .........

11.5 Hyperelastic-plastic MCC model parameters for

simulation of laboratory consolidation test .................

11.6  Hyperelastic-viscoplastic MCC model parameters for large

strain simulation of laboratory consolidation tests ........
11.7 Settlement cell/plates represented by 2.44 m deep pond ...........
11.8 Settlement cell/plates represented by 4.57 m deep pond ...........

11.9 Settlement cell/plates represented by 7.62 m deep pond ........... ’

11.10 Material parameters for hyperelastic-plastic consolidation

(ponddepth2.44m) ....coovviviniiiiiiiiii e






11.11

11.12

11.13

11.14

11.15

11.16

11.17

11.18

Material parameters for hyperelastic-plastic consolidation

(pond depth 4.57m) ....oeoeiiniiiiiiiiiiiie e

Material parameters for liyperelastic-plastic consolidation

(pond depth 7.62m) ....ooveniniiiiiiiiiiiii e,

Comparison of primary consolidation settlements at 485 days:

large strain versus small strain ..................cccovvvennnn.s

Location of peizometers ...........covvvviriiniininiiiiiiinieneeenanns

Material parameters for hyperelastic-viscoplastic consolidation

(pond depth2.44 m) ....oooviviiniiiiiiiiiiiice e,

Material parameters for hyperelastic-viscoplastic consolidation

(pond depth 4.57 M) ...ovvniiiiiiiiiiiiiiice s

Material parameters for hyperelastic-viscoplastic consolidation

(ponddepth 7.62m) ...cooviiiiiiiiiiiiie i

Comparison of creep settlements of different ponds ..................

vi

..... 159






3.3

4.1

4.2

4.3

5.1

5.2a

5.2b

5.3

9.1

9.2

93
9.4

9.5

9.6

LIST OF FIGURES
Page

Geometric representation of kinamatics

for a two-phase MIXtUIe ..........coiviiiiiiiiiiniiii s 13
Balance of mass: flow thicugh a control volume ........................ 18
Balance of mass: total mass of material point X

isnot conserved in ¢u(X) .....ooiiiiiiiiiiii 28
Prescribed boundary conditions of spatial domain Q ........................ 35
[lustration of multiplicative decomposition of the

deformation gradient ..........c.cooveviiiiiiiiiiiiii 43
Small Strain versus large strain ............cccoviieiiininin 35
Yield surface of the MCC Model inp-gplane ...........cccoevviiiniinnenen, 57
Unilogarithmic compressibility law ... 59
Bilogarithmic compressibilty law..............coocoiiinn 59
Limit of validity: comparison between unilogarithmic

and bilogarithmic compressibility laws .............c.cooiiiin 60
Schematic of Centrifuge .......cc.oovviiiiniiiiiiiii 99
Soil sample iN CONtAINET ........vvvviiniriiiiriieeriee e 101
Test monitoring in centrifuge ...........coviiiiiieiiiiii 102
Settlements from 70 gand 110 gtests .........ocoeiiiiiiiiiiiiiinn. 105
Variation of time scaling exponent with solid content..................... 106
Solid content versus model time ..........cooviiiiiniii 107

vii






9.7

9.8

9.9

9.10

9.11

9.12

9.13

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

11.1

11.2

11.3

Trendlines for model time versus percent of total consolidation .........

Variation of time scaling exponent with

Percentage of consolidation ...........c..coeveiiinennnnnn.
Prototype results from 70 gtests ...........ccooiiiiiiini
Normalized prototype results from 70 g tsets ......................
Prototype results from 110 gtsets ...........ooeieiiniinn,
Normalized prototype results from 110 g tsets ....................
Prototype settlements with multiple size wick drains ............

DIP4 mixed element .....ccovveiiiieriiiiiirerrercnriieaerariciesnns

FE mesh and initial pore water pressures for

one-dimensional consolidation problem ..................

One-dimensional hyperelastic consolidation: variation

of total potential withtime ...

One-dimensional hyperelastic consolidation: isochrones
of constant Cauchy pore pressure ...........coooeeeevnenes

One-dimensional hyperelastic consolidation: variation

of average degree of consolidation with time factor ....................c...

..........

----------

..........

..........

FE mesh for plane strain hyperelastic consolidation example ............

Plane strain hyperelastic consolidation: variation of centerline

excess pore pressure at depth z=a with time ......................

Plane strain hyperelastic consolidation: isochrones of

constant Cauchy pOre PresSure ..........cooeeeviinveieerraneencees

SPT boring logs for tests reported in Table 11.1 (Source: PSI)

SPT boring logs for tests reported in Table 11.2 (Source: PSI) ...........

Permeability versus void ratio plot from CRS

CONSOLIAAtION TEST +venteretetettriiiareeeetaeanttaneesenanaaassssess

viii

109

110

111

112

112

113

113

115

116

117

119

120

122

123

125

129

130






11.4

11.5

11.6

11.7

11.8

11.9

11.10

11.11

11.12

11.13

11.14

11.15

11.16

11.17

11.18

11.19

Void ratio versus effective plot from CRS

consolidation test ......coiiiiiiiiiiii i e, 133
Plan of wick drain installation ........ccoevviiiiiiiiii e 134
Principle of consolidation with wick drains ...................c.cooeiiins 134

Instrumentation plan: surcharge area no. 1 of Polk County Expressway,
Section 5 (Source: Atlanta Testing & Engineeing) ................ 136

Instrumentation plan: surcharge area no. 2 of Polk County Expressway,
Section 5 (Source: Atlanta Testing & Engineeing) ............... 137

Cross-section of clay slime ponds of surcharge area no. 1

(Source: PSI) .viiii i e 138
Cross-section of clay slime ponds of surcharge area no. 2

(Source: PSI) .oveiii e 139
FE mesh for oedometercell ............oviiiiiiiiiiniiiniiiiiiiin, 140

Large strain, hyperelastic-plastic simulation
of laboratory consolidation tests ...........cc.ovviiiiii. 140

Small strain, hyperelastic-plastic simulation
of laboratory consolidation tests ..............coveviiiiiiiniin.n. 141

Hyperelastic-plastic simulation of laboratory
consolidation test: large strain versus small strain ................. 143

Large strain, hyperelastic-viscoplastic simulation
of laboratory consolidation tests ..............ccovviiiiiiii. 144

Schematic of contributive cylinder of soil

surrounding wick drains ...........cocoiiiiiiin 148
FE meshes for different pond depths ...........cooveviiniiiiin 149
Hyperelastic-plastic consolidation settlement:
ponddepth2.44 m .....oooiiiininiiiiiiiiiiii 152
Hyperelastic-plastic consolidation settlement:
pond depth 4.57 M ....oviiiiiiiniiiiiii i 153
ix






11.20

11.21

11.22

11.23

11.24

11.25

Hyperelastic-plastic consolidation settlement:
pond depth 7.62 m ......ooovviiiiiiiiiiiiii

Piezometer data versus prediction of total Cauchy
pore pressure: pond depth 4.57m ...

Piezometer data versus prediction of total Cauchy
pore pressure: ponddepth 7.62 m ...

Hyperelastic-viscoplastic consolidation settlement:
ponddepth2.44 m ......cooooiiiiiiiiiiinii

Hyperelastic-viscoplastic consolidation settlement:
ponddepth4.57m ......oooiiiiiiiiiii

Hyperelastic-viscoplastic consolidation settlement:
ponddepth 7.62m .......coooiiiiiiniiiiiiin, e reerennen






CHAPTER 1
INTRODUCTION

1.1 Introduction

Non-linear response of geotechnical structures typically results from plastic
yielding and large deformation of the soil skeleton. There are many classical geotechnical
applications where non-linear effects due to these two factors could critically influence
the outcome of a numerical analysis. Two examples are large movement of slopes and
tilting of a tower due to P-5 effect. The impact of large deformation and plastic response
is most evident in soft clays. It is a well-known characteristic of clays that considerable
time is required for the occurrence of the compression caused by a given increment of
load. Two phenomena contribute to this large time lag. The first is due to time required
for the escape of the pore water. It is called the hydrodynamic lag or consolidation, a
phenomenon which involves transient interaction between the solid and fluid phases of a
soil-water mixture. The second phenomenon is called plastic time lag or secondary
compression. The slow continued compression that continues after the excess pore
pressures have substantially dissipated is called secondary compression. Secondary
compression occurs because the relationship between void ratio and effective stress is
usually somewhat time-dependent: the longer the clay remains under a constant effective

stress, the denser it becomes.



Various problems of coupled fluid flow and deformation in porous media arise

frequently in the fields of geotechnical engineering, groundwater hydrology and plate
tectonics, among others. Slope stability analysis, surcharge loading for consolidation

drainage, embankment, excavation, settlement of bridge approach pavements etc. are a
few examples of a wide spectrum of geotechnical applications that involves
consolidation.

The behavior of soil during consolidation is governed by the differences between
the total stresses acting on the soil mass and the pore pressure. In most practical field
cases it is necessary to describe the effective stress field to characterize the strength and
deformation properties of the soil. Although the no-flow (undrained) and the free-flow
(drained) conditions can be analyzed using a single-phase continuum formulation,
consideration of a two-phase soil-water relationship in a saturated soil medium is
essential in characterizing the soil behavior during the transient period of excess pore
pressure dissipation. The physics involved in consolidation phenomenon requires that

appropriate numerical analysis address coupled response of solid and fluid phases.

1.2 Research Focus

The mathematical structure and numerical analysis of nonlinear consolidation at
small strains are fairly well developed and adequately documented [1-10]. The geﬁeral
approach is to write the linear momentum and mass balance equations in terms of the
solid displacement and fluid potential (or pore water pressure), and then solve them
simultaneously via a two-fold mixed formulation. The small strain assumption simplifies

the linear momentum balance equation since it produces an additive form of elastic and



plastic deformations. In the context of finite element analysis, the small strain assumption
also simplifies the mass conservation equation since the volume change of the mixture
becomes a linear function of the nodal solid displacements.

In spite of substantial development of computational methods for small strain
consolidation, mathematical models capable of handling the problem of coupled fluid
flow and large deformation of the soil matrix are not developed well enough to be useful
for routine analysis of prototype geotechnical structures. Extensions of the small strain
formulation of the classical consolidation equations to large deformation are based
primarily on the use of rate-constitutive equations [8,9,12-14]. In addition to the
restrictions of small elastic strains impdsed by this hypoelastic formulation, it also
obscures a proper definition of ‘mean gradient’ and ‘average volume changes’ necessary
for imposing the mass conservation equation at finite increments. Consequently, second-
order terms in the hypoelastic extension are ignored, particularly in the mass conservation
equaticn, which leads to a degradation of accuracy when the load increment is large.

‘he present study adopts an alternative formulation for large strain elastoplasticity
based c¢: the multiplicative decomposition of the deformation gradient. This method
comple ely circumvents the ‘rate issue’ in large deformation analysis [17,18], and allows
for the development of large elastic strains. Multiplicative decomposition technique
better represent the particulate nature of soil, much like for metals from its crystal
microstructure. It provides a means for describing mathematically the relationships
between the reference configuration, the current configuration, and the unloaded, stress-
free intermediate configuration of a soil assembly subjected to large deformation in the

microscopic sense. A more recent development [19,20] indicates that the multiplicative



decomposition technique can be exploited to such an extent that the resulting algorithms
may inherit all the features of the classical model of small strain plasticity.

Proper characterization of fluid flow is another long-standing issue in large
deformation consolidation _analysis. Classical theory of mixtures [21-26] is employed in
this study to describe coupled response of solid and fluid phases. Accordingly soil-water
mixture is viewed as a two-phase continuum, appropriate balance principles that govern
the interaction between the solid and fluid constituents are derived. In contrast to
previous formulations of the mixture theories, however, this study focused on the motion
of the solid phase alone and uses the constitutive flow theory in terms of relative motion
of the fluid with that of the solid [27]. Spatial form of generalized Darcy’s law is used to
describe the constitutive relation of the fluid phase.

Due to its simplicity and practicality, modified Cam-Clay (MCC) model [28, 29]
of critical state soil mechanics is adopted in this study to represent the nonlinear
responses (plastic and viscoplastic) of the solid phase. Important features ! - 2
hyperelasticity and bilogarithmic compressibility law are added to MCC n:: el to better
simulate the behavior of soft clay in large strain regime.

Finally the mathematical framework of non-linear large deformation
consolidation analysis is implemented in a displacement-based finite element code
PlasFEM, which is been developed by the Geotechnical Engineering group at the
University of Florida over last few years. Numerical analysis is performed to study the

consolidation behavior of a field case of low solid-content phosphatic waste clay.




1.3 Scope of Work

The dissertation is organized in twelve chapters. Chapter 2 presents literature
review and historical development of the theory of mixtures for porous media based on
balance laws, micromechanical approach for large strain based on the theory of
multiplicative decomposition. In Chapter 3, general kinematics and balance laws for a
non-interacting mixture of non-polar constituents are derived in the light of modern
theory of mixtures. Balance equations, specific for a fully saturated soil media (two-
phase), are further reduced from generalized equations. In Chapter 4, field equations or
strong form of the boundary-value problem of consolidation phenomenon are established
from balance equations, corresponding weak forms are derived for use in subsequent
finite element formulation. Constitutive theories for solid and fluid phases, appropriate
for large strain, are outlined. Constitutive models for phosphatic waste clay (low solid-
content clay) are discussed in Chapters 5 and 6. Hyperelastic-plastic MCC (modified
Cam-Clay) model, suitable for primary consolidation response, is presented in Chapter 5.
Chapter 6 presents the development of a hyperelastic-viscoplastic MCC model, used for
simulation of time-dependent secondafy compression. Explicit expressions for the
consistent tangent moduli of the constitutive models are derived in the framework of
large deformation theory, based on multiplicative decomposition as mentioned before. In
Chapter 7, corresponding variational equations for boundary value problems are
developed and linearized for implementation into a finite element code. Chapter 8
presents the implementation issue of the governing equations, i.e., matrix formulation for
finite element code. Descriptions of the centrifuge equipments and instrumentation, used

for studying consolidation behavior of the phosphatice waste clay, are given in Chapter 9.



Chapter 9 also presents the aspects of centrifuge modeling and the results from the
centrifuge tests. Chapter 10 presents numerical examples of one and two-dimensional
hyperelastic consolidation. These examples demonstrate significance of large strain on
consolidation responses compared to the same for small strain formulation. Chapter 11
presents a study of consolidation phenomena of phosphatic waste clay, deposited at the
construction site of Polk County Expressway (a multi-lane expressway around Lakeland,
Florida). Numerical simulations are run for cases of hyperelastic-plastic (primary) and
hyperelastic-viscoplastic (secondary, i.e., creep settlement) consolidation. Field
settlement and pore pressure data are compared with numerical predictions. Chapter 12
contains a summary of the work that has been presented, as well as conclusions and

recommendations for future investigations.



CHAPTER 2
LITERATURE REVIEW

2.1 Consolidation

The first author to deal with the important problem of fluid-filled deformable
porous solids was von Terzaghi. In a famous paper presented to the Academy of Sciences
in Vienna in June 1923, von Terzaghi shcwed the derivation of his consolidation theory.
This theory was later published in his book, which is now considered as the first
substantial book [30] in soil mechanics.

In the early 40’s Biot [1] generalized von Terzaghi’s theory of consolidation by
extending it to the three-dimensional case and by establishing equations valid for any
arbitrary load varied with time. In the following years, Biot generalized his theory to
include properties of anisotropy, variable permeability, linear viscoelasticity, and the
propagation of elastic waves in a fluid saturated porous solid [2,31]. The main
disadvantage of Biot’s model, however, lies in the fact that the corresponding theory is
not developed from the fundamental axioms and principles of mechanics and
thermodynamics. Thus, some derivations are complicated and obscure. Finally, Biot [32]
developed, within the framework of quasi-static and isothermal deformations, a theory of
large deformations of porous media.

Since the beginning of the 1960’s the study of porous media advanced with
development of new continuum theory of mixtures. In 1960, Truesdell and Toupin [26]

presented a treatise on the classical field theories where they developed in detail the



properties of motion and fundamental physical principle of balance. In 1965, Green and
Naghdi [25] developed a dynamic theory for the relative flow of the two continua based
on an energy equation and an entropy production inequality for the entire continuum.
With the advances in modern computational science and the development of
rigorous numerical techniques, such as the finite element method, numerical
implementations of the consolidation theory, Biot’s equations and the mixture theories
found wide applications. A variational formulation of the dynamics of fluid-saturated
porous solids was the basis of a numerical method that Ghaboussi and Dikmen [33]
developed for the purpose of discretizing the spatial media into finite elements. Sandhu
and Wilson [34] first applied the finite element method to study fluid flow in saturated
porous media. With the presence of finite element method as a sound numerical
technique, it was possible to extend the mixture theory to encompass elasto-plastic non-
linear constitutive models and obtain reliable solutions of the field displacements and
pressures. A general analytical procedure that accounts for non-linear effects was
presented by Prevost [8]. In his work, Prevost focused on the integration of the
discretized field equations based on the mixture theories of Green and Naghdi [25]. Later
he worked on several numerical applications to study the consolidation of inelastic porous
media [35] and the non-linear transient pheﬁomenon [36]. Due to the increasing necessity
of nonlinear applications, Zienkiewicz and other researchers published a seriesr of papers
that elucidated various numerical solutions for pore-fluid interaction analysis.
Zienkiewicz et al. [37] classified different method of analysis in a comprehensive paper

on numerical solutions of the Biot formulation. A continuum theory of saturated porous



media that is applicable for soils exhibiting large strains was formulated later by Kiousis
and Voyadjis [38]. Borja and Alaréon [39] recently proposed a framework for large strain
consolidation based on continuum theory of mixtures.

The mathematical basis for balance principles presented in this study is derived
from the general theory of mixtures [21-26]. This research is focussed on fully saturated
porous media (two-phase continua). Field equations governing the interaction between

soil skeleton and pore fluid are developed from balance laws.

2.2 Large Strain Multiplicative Plasticity

Up to the beginning of the 1980s computational methods for large strain
elastoplasticity typically relied on hypoelastic extensions of the classical small strain
models; see, e.g., the reviews of Needleman and Tvergvaard [40], hence remained
restricted to small elastic strains. Computational approaches based on the multiplicative
decomposition appear to have been first proposed by Argyris and Doltsinis [41] within
the context of so-called natural formulation. Subsequently, however, these authors appear
to favor hypoelastic rate models on the basis that multiplicative formulations ‘.... Lead in
principle to non-symmetric relations between stress rates and strain rates’ (see [21, p.
22]). Simo and Ortiz [43] and Simo [44] préposed a computational approach entirely
based on multiplicative decomposition and pointed out the role of intermediate
configuration in a definition of the trial state via mere function evaluation of hyper-elastic
stress-strain relations. Extensions of classical volume/displacement mixed methods

within the framework of the multiplicative decomposition, originally introduced for
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plasticity problems in [45] are presented in [46]. In recent years, computational
approaches based on multiplicative decomposition have received considerable attention
in the literature. Simo [47] exploited a strain-space version of the principle of maximum
dissipation to obtain the associative flow rule consistent with multiplicative
decomposition, and used a (covariant) backward method to derive a large strain version
of the return mapping algorithms. Subsequently, Weber and Anand [48] and Eterovich
and Bathe [49] used the multiplicative decomposition in conjunction with the logarithmic
stored energy function and an exponential approximation to the flow rule cast in terms of
full plastic deformation gradient. The multiplicative decomposition along with a
logarithmic stored energy function is used in [50]. More recently, Moran et al. [51]
addressed a number of computational aspects of multiplicative plasticity and presented
explicit/implicit integration algorithms. Methods of convex analysis, again in the context
of the multiplicative decomposition, are discussed in [52]

The preceding survey, although by no means comprehensive, conveys the
popularity gained in recent years by computational elasto-plasticity based on the
multiplicative decomposition. Despite their success, these approaches involve
modifications, and often a complete reformulatign, of the standard closest-point
algorithms of the small strain theory. From z;l practical stand-point the implication is that
the implementation of classical models needs to be considered on a case-by-case basis in
the large strain regime.

In a later study, Simo [20] proposed a state-of-the-art algorithm based on

multiplicative decomposition of the deformation gradient, as suggested by Lee [53],
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Mandel [15] and others. The appeal of his formulation is that: the closest-point projection
algorithm of any classical simple-surface or multi-surface model of small strain plasticity
carries over to the large deformation context without modification. In particular, the
algorithmic tangent moduli of small strain theory remain unchanged while introducing a
further simplification: the closest-point projection algorithm is now formulated in
principal (Kirchhoff) stresses. For the static problem, the proposed algorithm preserves
exactly plastic volume changes if the yield criterion is pressure insensitive. For dynamic
problems, Simo [20] presented a class of time-stepping algorithms which inherits exactly
the conservation laws of total linear and angular momentum. Simo’s method is adopted
with success in some recent works [39,54,55] for formulating nonlinear plasticity model
in large deformation context.

Present study has followed the above-mentioned theory [20] of multiplicative
decomposition to derive explicit expressions of consistent tangent moduli for the

proposed elasto-plastic and viscoplastic constitutive models (see Chapters 5 and 6).






CHAPTER 3
THEORY OF MIXTURES

3.1 Basic Theory

The conceptual model of a multiphase continua is based on the phenomenological
behavior of each phase rather than particulate nature and the microscopic origin of the
phenomenon involved. In other words, each phase (or constituent) enters through its
average properties obtained as if the particles were smeared out in space. In order to be
able to derive multiphase field and constitutive equations for such a medium, a technique
for obtaining local average quantities is therefore necessary. Furthermore the basic
kinematics and balanced equations for each phase and for the mixture as a whole must be
defined. In following sections (3.2 to 3.4) general kinematics and balance laws are
derived for a multiphase (n-phase) continuum allowing for the selection of the
constitutive relations to be defined according to the particular phases that composes the

mixture. For simplicity, it is assumed that phases are non-interacting and non-polar.

3.2 Kihematics

A mixture can be viewed as a superposition of n single materials each of which
may be regarded as a continuum. It is assumed that at any time t each place x of a mixture

is occupied simultaneously by n different particles: X', X2, ...., X" As in single-phase

12
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theory, a fixed but otherwise arbitrary reference configuration and a motion are assigned

to each phase [26] as

x=¢7(X%) VYV a=l..n, (3.1)

Figure 3.1 Geometric representation of kinematics for a two-phase mixture

where X® denotes the position of o phase in its reference configuration, and x is the

spatial position occupied at the time t by the particle labeled X*. The function ¢? in (3.1)

is called the deformation function for o phase at time t. In classical continuum theory ¢f[x

is assumed invertible, and thus



14

X2 =(¢§‘)—l(x) V a=1..n. (3.2)

The invertibility of the deformation function ensures that a particle at X* cannot occupy

two spatial positions at a given time and that two particles of o phase with positions
X{'and X9 cannot occupy the same spatial position. Figure 3.1 shows geometrical

representation of (3.1) in Cartesian coordinate system € R>.
The velocity and acceleration of X* at time t are obtained from Equation (3.1) by

time differentiation, viz.

Ve = v () = 2 (1) = 1%
- > - Dt - b

o
2% =a°‘(x,t)=%t(v°‘)=i°‘,

(3.3)

where a superimposed dot indicates differentiation with respect to time holding X* fixed
(i.e., the material derivative following the motion of o phase). Material time derivative

may be computed from spatial description using the following definition

D (0)=2 () v -grad(s). (.42

Material time derivative of a volume integral can be expressed as

D [ (an-2 [ (taas [l a)r (.4b)

See [56] for proof of the identities (3.4a), (3.4b). Here, and in the following, grad and
GRAD are used to denote spatial and material derivatives, respectively. The deformation

gradient for X* at time t is defined by
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(0 o aXa a
F~ =F (X,t)= GRADx = =F3a | 3.5)
X%
and the velocity gradient is defined by
. —1
1% =1%(x,t) = grad v& = F* (FO‘) : (3.6)

3.3 Average Quantities

An important assumption in the theory of mixtures is that the phases of a mixture
are allowed to occupy common portions of a physical space. Then each spatial position x
in a mixture is occupied by n elements, one from each phase (see Figure 3.1 for n = 2). To
address this assumption one needs to define average quantities.

Average quantities are obtained by integrating microscopic quantities over an
averaging volume or area. In the macroscopic field, the averaging volume represents a
physical point, denoted by dV. Similarly, the averaging area dA, represents and
characterizes a physical point on the surface of dV, and is an infinitesimal element of area
in the macroscopic field. The part of dV occupied by the a phase is denoted by dV®, and
the volume fraction n* of the o phase is the fraction of dV occupied by the o phase

defined by

o_ o A
= ,t = — 3.7
n% =n%(x,t) v (3.7)

where n” is constrained by > n® = 1 and 0 < n® < 1. Similarly, the part of dA lying in the
a

a phase is denoted by dA®, and the areal fraction is defined by
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—0 _ =0 _
a%* =n (x,t)—————dA. (3.8)

Again, 2. 1% =1 and 0 < n® < 1.t is assumed in the folloWing that the identity
o

n% = n® holds [57].
A macroscopic average mass density function, p” is associated with each phase

and is defined as the volume average of the microscopic density function, p .

1
a _
p = dv Lva PadU, (39)

where dv is the microscopic volume element. The intrinsic volume average mass density

is defined as

1 1
o (0
p = P d\)——p . 3.10

Va o : ( )

If the mass density of the o phase is microscopically constant the intrinsic volume

average mass density equals to the microscopic mass density, i.e., p* = py and thus p* =

o
n Pg-

The mass density p of the mixture is defined as

p=p(xt)=> p% (3.11)
a

and the volume-average velocity v for the mixture is defined as

0=e(x,t)=l§ pv ¥, (3.12)
p
[0
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Following the similar averaging approach, a macroscopic partial stress vector t* may be

defined as

1

[0 4

t% = | o toda, (3.13)
where da is microscopic area element. t, denotes the intrinsic stress vector of o phase,

t* = n"%t,.

3.4 Balance Laws

Once kinematics and local average quantities of a mixture are derived, one may
postulate the laws of balance based on the theory of mixture [26] which must be satisfied
irrespective of constitutive relations. Phases are understood to be material elements,
which are open systems on a local state. Accordingly, local balance relations are derived
for each individual phase. The equations are obtained in spatial configuration by applying
the fundamental laws of mechanics: balance of mass, balance of linear momentum,
balance of angular momentum, and the first and second laws of thermodynamics.

For consistency in notations, in the derivation of balance laws and in the
following thereafter, spatial (deformed) configuration is represented by domain Q,
bounded by surface I" while material (undeformed) configuration is represented by

domain B, bounded by surface B.
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3.4.1 Balance of Mass

The balance of mass can be expressed as “The time rate of mass in a fixed region
in space Q is equal to the time rate of mass flowing through the surface I" that encloses

Q.” In equation form

%t-p—dgz-va-ndr, (3.14)

where n is the unit outward normal to the surface I', v is the flow velocity.
For illustration, mass flow through a control cube (6xxdyx6z) in Cartesian
coordinate space € R® is considered in Figure 3.2. Surface areas normal to the flow

components along coordinate axes are I'y = 8ydz, I'y = dx6z, I', = dx0y.

a a
PaVysay oy | pa Ve pa1%00,

s

pan_Axnaan paV)?+Axnaan
: X

L]
:
R A
.
]
.
.
V4 .
.
x| .
.
.

Pa Ve azn "0,

pav)(/l—AynaaQy

Figure 3.2 Balance of mass: flow through a control volume
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For the cube (3.15) can be written as,

o

At {[pav;iLAxn —pavg_AXna]Syﬁz + [pmv(;f+A n? —pav;‘_Ayna]Ssz

o
+[pOLVz%—Azn

y

) (3.15)

- pavg_AZna ]}6x6y = padVa' - padVal

t+At t

Dividing by the volume dV = 6x3ydz and At, then upon rearrangement (3.16) can be

written as
. o oL 0 [0
dlv(n PV )+5(n Pa)=0- (3.16)

(3.16) is the localized form of balance of mass for o phase.

3.4.2 Balance of Linear Momentum

In order to establish the balance of momentum laws for each o phase, one needs
to consider the forces acting on the o phase within the region Q such as drag forces, body
forces or gravity forces, as well as, the effect on the o phase of the mixture outside the
region Q. This effect is accounted for by introducing partial stress vector t*, defined in

(3.13). Now, let 6* be the Cauchy partial stress tensors [21-26] and n denotes the unit

normal vector to the surface I'. 6% is related to t* by the relation t* = c® - n.
The first Euler equation postulates that “The rate of change of the total
momentum of a given mass is equal to the vector sum of all the external forces acting on

the mass.” In equation form

—%t(inavadQ= LﬁadQ+ Lca ndlC + Lpang. 3.17)
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g is the vector of gravity acceleration, p< is the momentum supply for the o phase from

the rest of the mixture due to other interaction effects, e.g., relative motion of the phases.

p% is subjectto > p* =0.
o

From divergence theorem
J;oc _ .o
c -ndF—Ldlvc dQ. (3.18)
Substitution of (3.18) in (3.17) results in
D% ¢t o a aD%( o . O AOL, O
~D—£—£)p v dQ=J;)p Dt v szL dive” +p~ +p g |dQ, (3.19)

which simplifies to the local version of the balance of linear momentum equations for

individual phase as

p%a% =dive® +p%* +p%g. (3.20)

3.4.3 Balance of Angular Momentum

The principle of balance of moment of momentum states that the material rate of
change of moment of momentum of a body about a fixed point xo, is equal to the resultant
moment acting on the body around that point.

The moment of momentum for o phase is defined as
> = jQp“rxvo‘dQ. (3.21)

r = vector of moment arm = x - Xo. Making use of (3.17) material derivative of (3.21) can

be written in the form
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o
Do

D% . o  «
=— x v dQ
Dt D kP X

= L)rx(pagﬂ")a)dfh— _‘i_rx(ca -njdl".

From divergence theorem

'fl_rx(ca -n)dl" = Ln-(rxca)df =leiv(rxca)d0.

Substitution of (3.23) in (3.22) yields

[0 Oy
Dt Dt

_ jﬂ{rx(p“g +f)°‘)+ div(rxc“]}dg.

Local form of (3.24) results

DOL
p% -I—)t—(rxva) =rx(p°‘g+f>°‘)+div(rxc°‘).

(3.22)

(3.23)

(3.24)

(3.25)

For cases of non-polar phases partial stress tenor, * are symmetric since there is no

supply of moment of momentum (i.e., antisymmetric part of ® is zero).

3.4.4 Balance of Energy

Principle of balance of energy or the first law of thermodynamics states that the

material rate of change of internal energy in a body is equal to the resultant deformation

power acting in the body plus the rate of heat added to the body.

The internal energy in the body for o phase may be defined as

Uu% = L}paea dQ,

(3.26)
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where e” represents internal energy density for o phase. Assuming no supply of energy
due to interaction, e.g., chemical interaction within the phases material rate of change of

U* can be decomposed into following components

D%y DO‘(
P L k* + 3.27
Dt Dt . ) (3.27)

where P® = Mechanical energy due to deformation of o phase

K% = Kinetic energy of o phase

Q* = Thermal energy of o phase due to heat generation within the domain Q and
heat flow across the boundary dI'.

Material rates of energies for o phase can be expressed as follows:

a
DD = [ p%-v¥da+ [ p% v¥dQ+ [ % :v* @ndr, (3.282)

D%K 1
j‘Q o (X voc do
Dt Dt (3.28b)

L}l Ly vadQ+L_(%pava.va](va.n)dr,

DOLQOL
v LpO‘HO‘ dQ—Ji_qa-ndl". (3.28¢)

H® is the heat generation per unit mass for the a phase, and q* represents the heat flux
vector associated with each phase. Substituting (3.28) in (3.27), one obtains for o phase

the following expression
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o
D lpo‘eo‘ dQ = _[Qpag-vad§2+ L}f)“ vHdO+ fpe® :v* ®ndr

Dt 2
01 a a o l o o ol .o
+—at J'QEp v .y dQ+Il‘(Ep v .y (v -n)dl“ (3.29)

+ LlpaHa dQ—J}qa -ndl.

3.4.5 Entropy Inequality

Entropy inequality or the second law of thermodynamics puts limit on the direction of
such processes where thermal phenomenon are involved, permitting energy transfer to occur
spontaneously only in certain preferred directions. The limitation may be expressed
mathematically as an inequality stating that the intrinsic entropy production of the entire
mixture is always nonnegative and is positive for an irreversible process. In other words the
material rate of change of the entropy increase is always higher or to that of the entropy due

to heat transfer.

The entropy density for the entire mixture, ) can be defined as
n=> p%%, (3.30)
a
n® is the entropy density for o phase. Entropy increase for the entire mixture results

f,pndQ = jQ D p%n*da. (3.31)
o

Assigning to each phase a temperature 6%, given by a positive-valued function, the second

law of thermodynamics may be expressed as

D% 1 o« 1 a
%ELP%%Q_%LEJ;) H dQ+§_[re—a—q ndl'20,  (3.32)
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H*, q* are defined in (3.28¢). Using (3.4b), divergence theorem and balance of mass

(3.16), material time derivative of L} p%n% dQ can be derived as
D% . o a O( a. o T oo o
—]—:)TL)p n szL}a PN +d1vtp nv }dQ
al 0 o . f a o al 0 _a a o
:Lz n —a—tp +div|p~v +p 5“ +gradn~ v dQ (3.33)
o
=J.Qpa—an dQ.
ot

Substitution of (3.33) in (3.32) results

am®_ 1 a0 ot 1 o
ZL p® A~ 5%H% 4 div —q® ||dQ>0. (3.34)
ot g% 6%
o
Localization of (3.34) yields
0% % _LpaHa+div __l_qOL >0 (3.35)
& % R

Introducing the Helmholtz free energy function for o phase, < defined by

Y% =e® —%n%, (3.36)
one can write
ocaﬂa_Pa aeoc—awa—aaea 337
p = n— (3-37)
ot g | ot ot ot

Substituting (3.37) in (3.35), localized form of entropy inequality can be written as

of 2% oy* 8% | aia gagl L ooy
- - - —q% |20 3.38
p(at a pH+edweaq (:3%)
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3.5 Balance Laws for Saturated Soil

Balance laws of saturated soil medium are special case of generalized balance
laws of n-phase continuum considering n = 2 (solid and fluid phases). Following the

derivations in Section 3.4, necessary balance laws for soil-water mixture are deduced in

this section. Motions of solid and fluid phases are considered separately.

3.5.1 Balance of Mass

Following (3.16), localized form of balance of mass for solid and fluid phases can

be written, respectively, as
(s s),0( s
dlv(n pgV )+ a(n ps) =0, (3.39a)
. W w 6 W
dlv(n PwV )+§(n pw)=0. (3.39b)
Adding (3.39a) and (3.39b) gives the conservation of mass for the soil-water mixture as
op .. (A
=t div(p¥) =0, (3.40)

where v is the volume-average velocity, defined in (3.12).

3.5.2 Balance of Linear Momentum

In the absence of inertia forces balance laws of linear momentum for solid and

fluid phases can be written from (3.17) as follows:

Lpsgd§2+ Lf’s dQ+ jrcs ndl =0, (3.41a)

prng+ Lﬁw dQ+ Lcw-ndr=o. (3.41b)
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Since p>and p¥ are the internal forces which naturally will not affect the soil-

water mixture as a whole, p5 +p" =0, i.e., the seepage force exerted by the fluid on the
solid matrix is the negative of the reactive force exerted by the solid matrix on the fluid.

Consequently, the sum of (3.41a) and (3.41b) results in

[,ped+ [&-ndr=o. (3.42)

& is the Cauchy total stress tensor, 3 =6 +6".

Now, let P* and P° be the (non-symmetric) first Piola-Kirchhoff partial stress
tensors arising from the fluid and intergranular stresses, respectively. Also, let N denote
the unit normal vector to the surface 6B of the undeformed region B. The tensor P™ is
defined such that P" - N represents the resultant force exerted by the fluid per unit area of
the solid matrix in the undeformed configuration. Similarly, the product P° - N is the
resultant net force exerted by the individual grains (which may include the partial effects
of fluid pressures) over the same undeformed reference area. By the additive

decomposition of the Cauchy total stress tensors, we obtain a similar expression for the
first Piola-Kirchhoff total stress tensor P

P=J5-F' =P +P", (3.43)
where P® = Jo® - F'and P® = Jo® - F " are the first Piola-Kirchhoff partial stress

tensors arising from the solid and fluid stresses, respectively, and

ox
J=det(F); F=—; x=X+u. 3.44
(F); F== (3.44)
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In (3.44), J is the Jacobian, F is deformation gradient, X are the coordinates of a

point X in undeformed configuration, u is the macroscopic displacement field of the solid

phase, x are the spatial coordinates of point X.

P can also be decomposed as

- w
P=P+n—w, (3.45)

where P is the first Piola-Kirchhoff effective stress tensor, and (P" /n*)-N represents the
resultant force exerted by the fluid per unit area of void in the undeformed configuration.

P and P° are related by the equation

nW

pS =P+(-1———1]PW. (3.46)
An integral equation similar to (3.42) can be developed in terms of the tensor P.

With reference to the undeformed configuration, (3.42) can be written in the form

ijong+jan>-NdA=o, (3.47)

po = Jp is a pull-back mass density of the soil-water mixture and g is the vector of gravity
accelerations.

It is very important to note that pg is not a constant quantity. Figure 3.3 would
explain the scenario. In Figure 3.3, the fluid now occupying the void in a soil at a point
¢(X) may not necessarily be the same fluid material that occupied the same void at a
reference point X in the undeformed region B. Mathematically, ¢(X) = ¢(Y), where ¢.(Y)

is the spatial configuration of the fluid phase whose reference configuration is at Y.



28

$(X™)

Figure 3.3 Balance of mass: total mass of material point X is not conserved in ¢«(X)

Notice that Y does not necessarily have to be in B. Likewise, fluid phase of material point
X, X" might not necessarily be present in the spatial configuration ¢«(X). Hence, po does
not necessarily represents the true mass-density in B of the soil mass which now occupies
the volume ¢(B), since fluid can migrate into or out of the soil matrix during the motion.
In other words, the total mass of the soil-water mixture in B is not necessarily conserved
in ¢«(B).

A simple relationship analysis in the following would demonstrate the effects of

diffusion on mass densities. Let n(‘;v (X,t = 0) be the initial porosity of the point X in B.

Then, the initial volume of the voids in an elementary volume dV is nf)v dV, while the
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initial volume of the solid region is (1 -ng )dV. As the soil matrix deforms, its volume

changes to dv = J dV. Now, assume the solid phase is incompressible. Since u is the

displacement field of the solid phase, its volume is conserved at (1 - nBV ) dV in dv, while

the volume of the voids changes to dv — (1 -ng )dV. Consequently the porosity varies

according to

JdV—-(l—nw)dV
nV = 0 =1—(1—n(V)V)J‘1. (3.48)
Tdv

Hence, the total mass density and the porosity of soil vary with deformation through the

Jacobian J.

3.5.3 Balance of Energy

Ignoring kinetic energy and non-mechanical power, and assuming balance of
momentum and balance of mass hold, (3.29) can be simplified for balance of energy of

o phase as

[0
I]))—tjﬂpo‘e“dg= L}pag-vadQ+ jﬂf»o‘ v+ jl_ca :v* ®@ndl. (3.49)

The localized version of balance of energy can be derived in the following fashion.
Consider the left-hand side of (3.49), for example. Following the derivation of (3.33), one

can reduce

o
%? jﬂp“e“dg = [,p%e% da, (3.50)
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since grad e = 0. Using divergence theorem and localized version of balance of linear

momentum (3.20), one can reduce right-hand side of (3.49) as
L)(pag+ f)aj v*d0+ J;_ca :v® ®ndlr
=—J.Qdivca v*dQ+ L}[divca v% 4% :gradva}dQ (3.5
= [0 19da= [ c* :d%da.
1 is defined in (3.6), d* = Sym(1*). Since ¢* is symmetric, 6* : I* = ¢* : d*. Substituting
(3.50) and (3.51) in (3.49), localized version of balance of energy for o phase can be
written as
p%e® =c*:d%, (3.52)
Corresponding localization for the saturated soil media takes the form
pe=c®:d*+c% :d¥, (3.53)
where € is the rate of internal energy for the soil-water mixture obtained from the

volume average

pSeS 4 pWeW

p

(3.54)

€=
It is often convenient to describe the balance of energy in the material picture

because the domain of integration of the functions remains fixed. To this end, one makes

use of the following transformation. Let the right leg of the tensor P be pushed forward
by the configuration ¢. The result is the Kirchhoff total stress tensor T , which differs

from the Cauchy total stress tensorG by the factor J, i.e.,

T=J5=P F.. (3.55)
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7 can be decomposed into solid and fluid counterparts in any of the following ways

TW
T=t5+tW =+ —=r1+01. (3.56)

oW
7 is Kirchhoff effective stress, 6 is Kirchhoff pore water pressure (compression positive),

1 is the second order identity tensor. Now, pulling back the left leg of P by the inverse

motion (¢¢) "', one obtains symmetric S, the second Piola-Kirchhoff total stress tensor
such as
S=F!.P=Fl.7.F'=JF'.5.F (3.57)

Following (3.56) and (3.57), additive decomposition of S can be written as

S=S+6C7!, (3.58)
where S is the second Piola-Kirchhoff effective stress tensor and C is the right Cauchy-

Green tensor given explicitly by

C=F!.F. (3.59)
F is defined in (3.44).
Let x = ¢(X, t), E*(X, t) = e*(x, t). If one multiplies the localized balance of
energy (3.52) by J, and uses the porosity expression (3.48), one obtains the following
expression for the balance of energy for the.solid and fluid phases in localized material

form

psn%ES =15:4d5 =lSS :C;
2 1 (3.60)
PW(J—n%)EW =tV :a% =ESW 3 ol
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Balance of energy for the soil-water mixture in the material picture is now given by

Jpﬁzrs:ds+tw:dw=%SS:C+%SW:CW, (3.61)

Where E is obtained from the volume average

psn%ES +Pg (J—ngv)EW _

E= =8, (3.62)
Jp

The quantity J pE is the mechanical power generated per unit reference volume of the
soil-water mixture. (3.61) can be expressed in a more elegant form in terms of effective
Kirchhoff stress and deformation of the solid phase as

JpE =1:4d°, (3.63)
i.e., the sum of the mechanical powers of the partial stresses is equal to the mechanical
power of the effective stresses with respect to the deformation of the solid matrix
computed from its own motion.

Proof of (3.63) is given in section A.2. (3.63) states that total mechanical power in

soil-water mixture is absorbed by the energy rate 1 : d°, and that the pore pressure tensor
"/ n" in (3.56) performs no work. It is obvious from the fact that fluid is assumed

incompressible and has no shear strength. By virtue of these assumptions, fluid cannot

store volumetric nor deviatoric energy, i.e., it has no mechanical power.

3.5.4 Entropy Inequality

Ignoring non-mechanical power and kinetic energy production, the localized form

of entropy inequality or the second law of thermodynamics (3.38) can be simplified as
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pa(éa —\po‘)zo. (3.64)

In case of soil-water mixture (3.64) takes the form

e-y 0. (3.65)
€ is defined in (3.54). Similarly, ¥ is the rate of free energy for the soil-water mixture

defined as

pS\PS +pWWW .
P

V= (3.66)
Let x = ¢(X, t), ¥*(X, t) = y*(x, t). Similar to (3.62), volume average rate of free energy

¥ can be expressed as

L psn(s)‘{’S +ps(J—n8V)‘Pw
Y=

=V. (3.67)
Ip

From (3.62), (3.65), and (3.67) localized version of entropy inequality for soil-water

mixture in undeformed configuration B can be written as
JpE - Jp¥ > 0. (3.68)
J p¢ is the power generated from free energy. J p¢= d ¥ /dt; ¥ denotes the stored

energy function, or free energy, per unit reference volume of soil matrix. Substituting

(3.63), one can rewrite (3.68) as

1:d5 -—>0. (3.69)



CHAPTER 4
VARJATIONAL EQUATIONS, CONSTITUTIVE THEORIES

4.1 Boundary Value Problem

In order to formulate a well-defined boundary value problem for consolidation
phenomenon, one needs to consider a problem domain with a set of suitable boundary
conditions. Let B = R™ (nsd = no. of spatial dimensions) be an open set in material
configuration (time tg) with piecewise smooth boundary 0B. B is assumed to admit the

following decomposition

oBY U B! = 6B,

(4.1a)
oBY N oB! = @,
6% U aB! = 6B,

(4.1b)
oB® nort = @.

2B, 6B', 5B°, AB" are open sets in 6B. dB? and 6B' represent the portions of 9B with
prescribed displacement and tractions, respectively while 8B® and 6B" represent portions
with prescribed fluid potential and volumetric flow rate, respectively. @ is a null set.

In spatial description at any time te[ty, t,+], reference domain B will be mapped
to the configuration Q = ¢(B) = R™? with boundary I = ¢(6B). Similar to (4.1),

decomposition of boundary I" will now take the following form

d ot
rdort=r
~ ’ (4.22)
rdArt-g,
34
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Surbh=r, @2b)
r%~rh =g

Figure 4.1 Prescribed boundary conditions of spatial domain Q

In (4.2a) and (4.2b), T = ¢(6B%), I = ¢«(B"), I'® = 4(dB%), I'™ = ¢«(8B"). Figure 4.1
shows decomposition of domain boundary in spatial configuration. Having outlined the
domain boundary, one would require strong form of consolidation phenomenon with

appropriate boundary conditions to define a well-posed mathematical problem.

4.2 Strong Form

Strong form or field equations of consolidation problem emanate from balance
laws. Equation of equilibrium is derived from balance of linear momentum. Localization

of (3.47) results in the following statement of stress equilibrium in material description
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DIVP +p,yg = 0. (4.3)
DIV is the material divergence operator. (4.3) is subject to the following boundary
conditions: the motion ¢ is prescribed to be ¢° on 9B = 6B, and the traction P - N = tis
prescribed on the remainder B'; and subject further to the constraint imposed by the
balance of mass. Push-forward of (4.3) in spatial configuration € can be obtained as

divt +Jpg =0, 4.4
since grad J = 0 (see Section A.1).

Equation of flow continuity is derived from the balance of mass. It is assumed in

this study that both the fluid and solid phases are homogeneous and incompressible, i.e.,
d(p*)/ét = 0; grad p, = 0 (see Section A.1). Using these assumptions, p, can be factored

out and eliminated from (3.16), resulting an expression
div(n“v“)+ %(na)= 0. 4.5)
Adding (4.5) over the phases yields
div[(l -n% )vs ]+ div(anW ): 0. (4.6)
For future reference, it is useful to define a superficial, or Darcy, velocity as
v =nwl(vW —vs). 4.7
The vector V represents the relative volumetric rate of flow of fluid per unit area of
deforming soil mass in spatial configuration Q = ¢«(B). V is related to fluid potential [ ]
by constitutive relationship. See Section 4.5 for discussion. For simplicity of notation, v

will be used for solid phase velocity, v* in subsequent discussion. Substituting (4.7) in

(4.6), field equation of flow continuity can be obtained in the spatial reference as
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divv +divv = 0. (4.8)

(4.8) is subject to the following boundary conditions: fluid potential [] is prescribed to be
[1° < $(8B®), and the volumetric flow is ¥ - n = -q on the remainder ¢(8B"); and subject
further to the constraint imposed by the conservation of momentum. Here n is the
outward unit normal to the deformed surface ¢(0B) and q is positive when fluid is being
supplied to the system. In material description, (4.8) takes the following from

DIVV + DIV V = 0. (4.9)
V,V are pull-back velocities in undeformed, reference configuration B. V, V can be

obtained through Piola transform of v,V such that, V = JF~! . % ,V=JF"'!.v.Let

V.N=-Qbethe prescribed volumetric rate of flow per unit undeformed area across the

boundary 6B", N being outward unit normal to the undeformed surface 8B. Q maintains

the same sense of direction as q.

4.3 Weak Form

In order to establish weak form of the boundary value problem, one needs to
define following spaces in accordance with the standard arguments of variational

principles. Let the space of admissible configurations be
C4 ={¢:B—>Rn5d’¢i cH!, ¢ =dq on o84 (4.10)

and the space of admissible variations be

Rnsd

Vg =in:B > ni eHY, n=0onaB9}, 4.11)
i) i




38

where 1) is an admissible virtual displacement field, H' is the usual Sobolev space of
functions of degree one. Further, let G : Cy x Vy, — R denote the weak form of

equilibrium equation (4.8) in material description.

G(¢,I1,1) = jE(GRADnzﬁ—pOn.g)dv—jaBn-tdA. (4.12)
The balance of linear momentum is given by the condition G(¢, I, ) = 0. The formal
statement of (4.12) is: Find ¢ € C4 such that G(¢, I, ) = 0 for all neV;. Using (3.55)
and (3.56), one can rewrite an equivalent expression of G of (4.12) in the same

undeformed, material configuration with the integrands evaluated in spatial description as

follows:
G(¢,IL,n) = jB(gradn :T+0divn—pon-g)dV - faB“ -tdA. (4.13)
Now, let the space of potentials in spatial reference be
Co ={H:¢t(B)—>Rn5d‘HeHl, I1=TIlg on I'® (4.14)
and the corresponding space of variations be
Vg ={\|J:¢t(B)——)RnSd'\|JeH1,\y=00n1"e}, (4.15)

where  represents an arbitrary virtual pore pressure field. Further, let H: Cgx Vg— R
denotes the weak form of equation of continuity (4.8) in spatial description.

H($,ILy) = [ (wdivv ~grady -¥)dQ - [ y-qdr. (4.16)
One can show that the balance of mass is given by the condition H(¢, I1,y) = 0. Formal
statement of weak form (4.16) will translate as: Find IT € Cg such that H(¢,IT,y)= 0 for

all admissible y € V.
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The domain of integration of H(¢, I1, \u)of (4.16) can be of evaluated quite easily
in undeformed, material configuration by introducing the Jacobian J. In doing so, one

would require the following identity
J = Idivv. 4.17)

J is the time derivative of the J. See Section A.4 for proof of the identity (4.17).

Substituting (4.17) in (4.16) yields
H(¢,I1,y) = L(\pi-grad\u-ﬁ)dV—LB\pQ dA. (4.18)
Relation of area transformation of flow rate, q dI" = Q dA (see Section A.4) is employed
in deriving (4.18). H(¢,I1,y) in material description takes the form
H($,IT,y) = IB(wj—GRADW-V)dV—LB\pQ dA. (4.19)
(4.18) and (4.19) are equivalent expressions since GRADy -V = grady - Jv.

Presence of rate term J in the variational equation H(¢,IT,y) makes it

mathematically awkward. One can eliminate rate terms altogether by semi-discretization
in time domain, via finite difference, for example. Following is a brief discussion on time

descretization scheme for consolidation problems.

4.4 Time Descretization Scheme

The ordinary differential equation associated with the problem of consolidation is
generally stiff. A physical insight provides an explanation: points near drainage
boundaries consolidate many times faster than do points at remote places. The spectrum

of eigenvalues associated with the consolidation equation is therefore wide.
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The general linear k-step method for approximating the solution of a system of
ordinary differential equations of the first order,
d=f(d,t), d(0)=d,, t=0 (4.20)
is
k
Z(O‘mdnﬂ—m +AtBmfn+1-m) =0, (4.21)
m=0
where At = ty.1-t, and olm, B are unknown coefficients. A linear multistep (LMS) method
is explicit if Bo = 0, otherwise, it is implicit. Implicit method is preferred in this study
because it has a larger region of stability than the explicit methods, and it is compatible
with the stress point algorithms used in the development of constitutive models (see
Chapters 5 and 6). As a result, Bo = 0. (4.21) has 2k + 2 unknown coefficients.
An effective technique for solving stiff differential equation is provided by so-
called stiffly stable methods proposed by Gear [58-61]. These k-step methods of order k
are based on backward differentiation formulas (BDF) derived by setting 3o # 0, B1 = B2
= ... Bx = 0. The resulting BDF approximation is
K
D (@mdy1-m)+AtBofy iy =0 (4.22)
m=0
with k + 1 unknown coefficients which one can choose by forcing a k-step method to

satisfy an accuracy of order k. There is an arbitrary normalizing factor so that one can set

o = -1.0, leaving k unknowns. (4.22) then takes the form

K
dp4 - Z(amdn+1—m) —AtBofp 4 =0. (4.23)

m=1
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See [5] for determination of coefficients for BDF-k scheme. (4.23) can be made more

generalized by introducing one-step recurrence relation for f such that

k
dpyp - Z(amdnﬂ—m) —MtBo[Bfn+1 +(1-B)fy ]=0. (4.24)
m=]

0 < B <1 is the parameter of generalized trapezoidal method. Some of the well-known

families of -methods are presented in the following.

Table 4.1 Generalized trapezoidal method

B Method

0 Forward Euler

172 Crank-Nicolson

1 Backward Difference

Unconditional stability is achieved for any At if § > 1/2. In general, the nonlinear
responses of interest are dominated by low-frequency component of the system, but high
frequencies also enter into the solution because of the numerical approximation. It is
known that the backward difference scheme (B = 1.0) can damp such high-frequency
components but at the expense of accuracy. On the other hand, Crank-Nicholson scheme
(B = 1/2) possesses a second order accuracy but lacks the numerical dissipation of the
backward difference scheme. It was shown in [61] that the variable step size, variable
order BDF methods are convergent and unconditionally stable for ordinary differential
equations.

Following (4.24), one can obtain time-integrated variational forms of

H ¢ (9,11, ) given as
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v k
H i (9,11, y) = L—A—t Jn+1— ZoamIn+i-m |[dV
m=1

~Bo [ Blerady-19), ., +(1-B)(erady - J¥), ]dV (4225
—Bo LB[BQn+1 +(1-B)Qn]dA=0,

Hyt (0,1 y) = [+ s
at (9, ,W)—LA,[ Jn+1 Z?mJnﬂ-m dv
m=
~By L[B(GRAD\V-\N’)H + +(1-B)(GRADY V) |dv (4.26)

~Bo [ BQn+1 +(1-B)Qu]dA=0.

(4.25) and (4.26) are obtained from (4.18) and (4.19), respectively.

4.5 Large Deformation Plasticity Model for Soil Skeleton

In this study, plasticity behavior of soil skeleton in large deformation is based on
multiplicative decomposition of the deformation gradient, F [15, 16]. Let X be a
macroscopic point containing a sufficient number of solid particles in the reference,
undeformed configuration B, and x be the configuration of X at some timet >0, i.e., x =
¢(X). Recall from (3.44), F = 0x/0X. x and X are coordinates of x and X, respectively.

The motion of X produces both reversible as well as irreversible microstructural
changes in the soil. Typical processes associated with reversible microstructural changes
include elastic deformation and (for plate-like particles) elastic bending of the granules
comprising the assembly. As x is unloaded, it moves to some intermediate, stress free
configuration defined by the macroscopic point x". Assuming that this intermediate

configuration exists, the chain rule can be used to express F in the product form
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u
F=_6";.aa"_XEFe-FP. (4.27)
ox

F® = 0x/0x", F* = 0x"/0X. Figure 4.2 presents the schematic of the multiplicative

decomposition of F.

Reference
Configuration

Configuration

Intermediate
¥ Configuration

Figure 4.2 Illustration of multiplicative decomposition of the deformation gradient

Ignoring non-mechanical power and kinetic energy production, balance of energy
and the use of the second law of thermodynamics lead to the following reduced
dissipation inequality

D:r:d-ilf:ls:C—d—leo, (4.28)
a2 dt
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where d = Sym(l) is the rate of deformation tensor, 1 = F-F~! is the overall spatial

velocity gradient, and  is the stored energy function. Clearly, d¥/dt = J pﬁ andD=0
for an elastic material (see (3.63)).

The form of the stored energy function y determines the constitutive
characteristics of the soil. For isothermal, elastic processes, y depends only on X and C if
it is to satisfy the axiom of material and frame indifference. Equally well one can say that
for isothermal, elastic processes y is a function of X and elastic left Cauchy-Green
tensor, b, provided that b® satisfies an objective transformation.

An elasto-plastic process requires a yield function, a hardening rule, and the
imposition of consistency condition. Let f be the yield function defined as f(t, x) = 0. %
€ R" is a suitable vector of m > 1 (stress-like) internal variables characterizing the
hardening response of the soil. £ € R™ is a vector of internal plastic variable (strain-like)
conjugate to 7 in the sense that y = - O'P/0¢ . From the framework set in (4.27), y takes

the form

t
Y= lP(X,be,g); b® =F° (Fe> : (4.29)
Now, consider the following time-derivative of ¥

dF_ 9% peo S fpeane itk oy @30
&t gp®  ap® %

where 7 b° is the Lie derivative of b°. Inserting (4.30) in (4.28) and assuming isotropy in
the sense that b° and 6¥/6b° commute, the dissipation inequality can be expressed as

_1 .
D= r—2d—lp-be :d+2d—qj-b“':(-lzub‘~‘-be j—?-q—’-gzo. (4.31)
db® db® 2 ok
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The first term of (4.31) yields the constitutive relationship

T=2 j:; b, (4.32)

while the other terms yield, following the requirement f(t, %) = 0 and the postulate of

maximum dissipation,
——/,b® =<p—alf—-be, g=¢a_f.. (4.33)

¢ and f satisfy the requirements of consistency conditions such thatp >0, f <0, and ¢ f

= 0. Thus (4.33) defines the flow rule. (4.32) and (4.33) satisfy the reduced dissipation
inequality of (4.28) even with the use of empirically derived hardening law. The flow rule
(4.33) possesses a number of important properties. In particular, it gives the correct
evolution of plastic volume changes as the following observations reveal:

(i) The total and elastic volume changes are given by J = det(F) > 0 and J* =
(det(b%))!"? > 0, respectively.

(i1) Let J? = det(FP). The rate of plastic volume change predicted by the (4.33); is

given by the evolution equation
d( .. | Of
—\lo JP)= t{—} 4.34
5 |08 otr| = (4.34)

which implies exact conservation of plastic volume for pressure insensitive yield
conditions; i.e., if tr[0f/0t] = 0.
The left Cauchy-Green tensor b° can be decomposed spectrally into
3

b= 3 (18 m®;  m® —a® @n®, (4.35)
A=l
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where A%, is the elastic principle stretch corresponding to the principal direction n® . ®

is a vector operator defined as (a®b);; = a;b; for any vectors a and b. Since t and b°

commute, T can be decomposed spectrally in the form

3
t= pam®), (4.36)
A=l

where B4 are the principal Kirchhoff effective stresses.
By the assumption of frame indifference and isotropy, the free energy function

can be expressed as symmetric function of the elastic principal stretches, i.e.,
‘P(X,be)z ‘P(X,ef,sg,sg); % = m(x‘; ) A=123, (4.37)
where €% ’s are principal elastic logarithmic stretches. Thus, the elastic constitutive

equation (4.32) reduces to a scalar relationship between B and €% such that

BA = o > A= 192533 (4.38)

Oex
In the elasto-plastic regime, the additional task of enforcing the consistency condition,
f(z, x) =0, is done incrementally. In the first step, plastic flow is frozen and an elastic

assumption ignoring the constraints imposed by yield criterion leads to elastic a trial

elastic state.

f=1f; Be=2Sym(l-be); =0, (4.39)
where f = 0x/0x, is the deformation gradient evaluated relative to the converged
configuration ¢, (B). In the second step, trial state is held fixed and plastic relaxation is

introduced. The algorithm is given explicitly
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f=0; b® =-2¢?—1-be; g’:ygi, (4.40)
ot ox,

subjectto ¢ 20, f<0,and ¢ f=0.

Incremental counterparts of the evolution equations (4.39) and (4.40) are obtained
from the so called product formula algorithm [62]. From (4.39), trial elastic left Cauchy-

Green tensor is obtained in incremental form by freezing plastic flow as

bW =£.p¢ £t §=&n, (4.41)

where b and &, are the respective values of b® and & at configuration ¢t (B). Similar

to (4.27), b®" can be decomposed spectrally in the form
3
A Z(}&tr)zmtr(A); m{T(a) _ ptr(a) g ptr(a) (4.42)

A=1

Introducing the product formula algorithm into the plastic flow equation then yields
Of ), etr of
b® =ex (—ZA —1|-b>; =&, +AQ—, 443
p *) §=&n +A0Q o (4.43)

where A is an incremental consistency parameter that satisfies the conditions A > 0, f
<0, and Apf =0.
Now, by invoking isotropy one can conclude that there exists an equivalent

function f = f(By,B,,B3,&) such that

_@_f_= 3_6[_ (a) 4.44
pe AzzlaBAm ’ (449

The function can then be used in (4.43), together with (4.35), to obtain
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3
Ar 2 of
b = Z[(x‘;) exp(qu)WHm(A). (4.45)

A=l A

Comparing spectral decomposition of k%' in (4.42) and (4.45), one can conclude that

2 2
m® =@ (55 ool 200 22357, a-120. a0
A

A

(4.46) states that the principle directions n*” coincide with the trial principle directions

n"™), and that the plastic relaxation equation takes place along the fixed axis defined by
the trial elastic state.

Finally, an additive form of the plastic relaxation equation is obtained by taking

the natural logarithms of both sides of (4.46),. The result reads

€ =S _ng 2l A=123, (4.39)
> ’ aBA

(4.39) represents a linear return mapping algorithm in the strain space defined by the
elastic logarithmic principal stretches. In Kirchhoff effective stress space, a linear return
mapping algorithm similar to that presented in [63] can be derived if one assumes an

elasticity operator aap from the equation

L
Ba = e ZGAB%?%, A=123. (4.48)
Oep  B=1
The result reads
3 of
Ba =BY —AcpZaAB ——, A=123. (4.49)
B=1 B
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Similarity in form between the standard linear return maps of the infinitesimal theory and
(4.48), (4.49) allows the algorithms for the infinitesimal theory to be preserved and
exploited for finite deformation analysis, with the added simplification that calculations

now takes place in the fixed principal stretch directions.

4.6 Constitutive Law for Fluid Flow

Similar to solid phase one needs to describe appropriate constitutive law for fluid
phase. In this study flow is assumed laminar and generalized Darcy’s law is employed to
describe the constitutive relation between relative volumetric flow ¥ of (4.7) and fluid
potential I'l. Linear constitutive equation is given as

v =-k-gradIl, (4.50)
where Kk is the second-order permeability tensor and IT is the fluid potential, defined in
(4.14). The negative sign in (4.50) implies that fluid always flows in the direction of
decreasing potential. Permeability k is an important soil parameter which depends on
other material properties such as: particle size, void ratio, composition, fabric, degree of
saturation [64]. For most practical purposes, k is assumed to be symmetric, positive-
definite.

- For incompressible flow the potential I'T can be decomposed as

m=me+m®; ml=—2

. (4.51)
Jpwg
I1° and IT° represent pressure and elevation counterparts, respectively. g is the gravity

acceleration constant, 0 is Kirchhoff pore pressure as defined in (3.56). Taking spatial

gradient of (4.51); and using (A.3), one obtains



50
e

grad IT = g{;—g + é (4.52)
w

If IT° is measured in the direction of gravity, g/g takes a convenient form of {0, 1, 0}" in
Cartesian space € R>. Thus the variational equation (4.18) for the volume conservation

may be written as

grad©

H(¢,IT,y) = _[B\yjdV+ IBgradw-k-( +J—g—jdV— LBq;QdA. (4.53)

Pwg g

4.7 Definitions of Strains

Since both the small and large strain formulations of consolidation models are
used for numerical analyses (see Chapters 10 and 11) it is important to define these two
types of strains. Consider the case of one-dimensional compression loading as shown in

Figure 4.3. Compression positive sign convention is used in the following definitions

q
b dL L

1
-y J
A

hont
-

Y 4 y

Figure 4.3 Small strain versus large strain

The small strain or the conventional strain e is defined as the change in length per

unit initial length since the geometry is not updated in small strain formulation
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L,-L
de=3L. e=if°dL= 0"~ (4.54)
L, L, L,

In (4.54), de is the incremental small strain.
In large strain formulation geometry gets updated. As a result, the incremental

large strain de is defined as the change in length per unit contemporary length.
de=—. ~ (4.55)

One can obtain an expression for large strain € by integrating (4.55) for a finite amount of

deformation as follows:

odb _ (L e
e= "= m(Lo) In(1-¢). (4.56) -

€ is also termed as logarithmic strain or natural strain.



CHAPTER 5
HYPERELASTIC-PLASTIC MCC MODEL

5.1 Introduction

Elasto-plastic models based on critical state formulations have been successful in
describing many of the most important features of the mechanical behavior of soils such
as hardening, softening and pressure sensitivity. The modified Cam-Clay (MCC)
plasticity model of critical state soil mechanics [28] is one of the most widely used
plasticity models because of its practicality and simplicity. As a result, MCC model is
adopted in this study to simulate elasto-plastic response of phosphatic waste clay. Two
important modifications are incorporated to the small strain version of MCC to take into
account large deformation effects. These modifications are hyperelasticity and
bilogarithmic compressibility.

Elasticity models are commonly incorporated into elasto-plastic constitutive
models through a hypoelastic formulation. However, extension of a hypoelastic
formulation to the case of nonlinear elastic soil response could result, in some cases, in
conservative models [65]. In case of small strain formulation, the use of non-conservative
elastic models consistent with critical state theory has been justified by the hypothesis of
small deformation [66]. This argument is unacceptable in the large deformation regime
particularly under conditions of cyclic loading where significant energy can either be
extracted or dissipated from certain loading cycles. On the other hand, hyperelastic

materials are those for which a stored energy function exists, and hence, are conservative.
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Nonlinear hyperelasticity model with a constant elastic shear modulus is used for large
deformation Cam-Clay model in [67]. Though energy conservative, use of constant shear
modulus can be erroneous since experimental evidence suggests that for soil elastic shear
modulus does vary with effective volumetric stress [60, 68]. Consequently, a class of
two-invariant stored energy functions [68] is employed in this study which includes
pressure-dependent as well as constant elastic shear modulus for special case. A variable
elastic shear modulus leads to fully coupled volumetric and deviatoric elastic responses.
Another limitation in small strain formulation is the use of linear variation of the
void ratio (or specific volume) with logarithm of effective volumetric stress to describe
the hardening response of the soil [28]. This assumption can be justified for small
volumetric strain, which does not hold for large deformation regime. In large strain,
linear void ratio — logarithm of effective stress variation can result in a physically
meaningless solution such as the prediction of negative specific volume even at
realistically low values of stresses. In this study, this limitation is addressed by
incorporating bilogarithmic compressibility law, i.e., linear relationship between the
logarithm of specific volume and the logarithm of effective volumetric stress as proposed
in [69-71]. Advantages and generality of bilogarithmic compressibility law are discussed

in a following section.

5.2 Hyperelastic Model

The formation of hyperelasticity is based on the existence of a stored energy

function ¥ = W(&%), where £° is the vector of elastic lograrithmic principal stretches. The
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effective principal Kirchhoff stress vector § can be expressed in terms of ¥ (see (4.38)).

Substituting (4.38), the elastic moduli a° € R**> can be expressed in tensor notation as

o B _ %W

. 5.1
Yooae®  aefae®
J 1]
Assuming LP(se ): ‘P(es,,ag ), one can use the chain rule to expand (4.38) as
¥ oY oes
B; = v, OF Oes (5.2)

A€
Oty asie el 68?

ey ande are the volumetric and deviatoric invariants of €%, respectively.

gy =¢%.5; s = % e®l; e® =¢° —%835, (5.3)
where § =[1 1 17" Since
e e
v _s, %s _ 24, (5.4)
age age 3
where n = e / e®||, then (5.2) can be rewritten in the equivalent form
2 .
B=p6+\/;qn=p8+s, (5.5)
where
oY 1 oY 3
p=——=—B-85; q=—=\/:”s||; s=p-pd. (5.6)
oy 3 g V2

p and q are the mean normal stress and the deviatoric invariant of B, respectively. s is the

vector of deviatoric principal Kirchhoff stresses.
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The elastic moduli tensor can be obtained by differentiating the stress equation

(5.6) with respect to the corresponding strain components. In order to do that, one would

need D® = VV¥ e R?*2, Hessian matrix of .

2 2
De{Dﬁ Dg}[o W68 B \P/asf,asg]_ 57

DS, DS, | |0°w/eeS0eS 02w/ oeS0es

The first time-variation of stress invariants now takes the form

{?}=D {83} (5.8)
q £g

Note that D° is symmetric provided that the function v exists. If DY, # 0, then the

volumetric and deviatoric elastic responses couple, that is, an imposed volumetric strain
produces a shearing stress response, and vice versa. The following section investigates
the coupled elastic responses within the context of stored energy function developed
specifically for cohesive soils.

Consider a class of stored energy function of the form [68]
e __e )
\P(sg,ag)=p oK exp[sv K8v0]+—;-u(sg) , (5.9)

where sso = elastic volumetric strain corresponding to a mean normal stress of po; k¥ =

elastic compressibility index; and p = elastic shear modulus defined by the expression

£V —Ev0
L =Ly +Opgexp — | (5.10)
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1L contains a constant term o and a tern that varies with €5 through a constant

coefficient . If a = 0 and p, > 0, then the elasticity model is defined by a variable elastic
bulk modulus and a constant elastic shear modulus.

The following elastic constitutive equations can be derived from (5.7) and (5.9):

8?/_830 e
p =poPexp - F q = 3peg, (5.11)
e )2
where B=1+3aleg | /2k.
e __.¢€
K K K
e __e
DS, /3=p =g +[%Jp = g +apy exp[si—f—@—} (5.12b)
K
30es 3 e e __¢
Df2=D§1=[ ;85]p= O‘%"SS exp{gv evo | (5.12¢)
K K

An important feature of elastic soil behavior, presented in (5.12a), is that the elastic bulk
modulus K is a linear function of p. With a suitable selection of parameters, elastic shear

modulus u can be made constant or a linear function of p (see (5.12b)). Since the

coupling terms DY, and DS, can be nonzero for o # 0, the elastic shear and volumetric

responses are coupled for a general loading path. In extreme case, when py = 0 and

£ =v2k/3a; det(D%) =0, i.e., D° becomes singular. This situation arises when the

stress ratio q/p reaches its maximum value of v3ak /2 [68].
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5.3 Plasticity Model

The essential ingredients of a plasticity model are a yield function, a flow rule and
a hardening law. Two-invariant yield function of MCC model [28] is given by the

ellipsoid

2
f=f@.a.pe)= =5 +p(P-pc)=0. (5.13)
M

Here f is defined in the space of principal Kirchhoff stresses, B. Invariants p, q are given
in (5.6), Kirchhoff preconsolidation pressure p. is a plastic state variable that describes

the size of f. M is the constant slope of the critical state cone in the p-q plane.

M Yield
Surface

Pe

Figure 5.1 Yield surface of the MCC Model in p-q plane

Hardening law and flow rule of MCC, appropriate for large strain formulation, are

presented in the following.
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5.4 Hardening Law

In case of small strain, the growth of p. is conventionally defined by a linear
relationship between the void ratio e and the logarithm of p., or, equivalently, by a linear
variation of the specific volume v = 1 + e with the logarithm of p, for virgin loading (see

Fig. 5.2a). Corresponding hardening law takes the form

2 - 3P (5.14)
Vo Pc

where vy is the reference initial specific volume at a preconsolidation pressure pco, and Py
is a constant compressibility index of the soil. Upon integration, the hardening law (5.14)

defines the following relationship between the specific volume v and the logarithm of p,
L=1_xln(l’_0]_ (5.15)

The limitations of this hardening law are generally well recognized, and include
among others, that a negative void ratio can result even at realistically low values of
preconsolidation pressure, and that the linear relationship is valid only over a narrow
range of values of the effective volumetric stress.

An alternative hardening law for finite volume changes, which appears to have
been first proposed by Hashiguchi and Ueno [69], and later studied more extensively by

Butterfield [70] and Hashiguchi [71], is of the form

Vo AP (5.16)
L Pc

where A is the appropriate compressibility soil index in the large deformation regime for

virgin loading. A simple integration of (5.16) yields the relationship
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h{i) =\ m(ﬁc—) (5.17)
Yo Pco

which indicates a linear variation of In v with In p. (see Fig. 5.2b).

AVg A

Peo Pec > lnpc Pco Pc > lnpc

Figure 5.2a Unilogarithmic compressibility ~Figure 5.2b Bilogarithmic compressibility
law law

(5.17) can be also be written in the form
v _ (Pco ]7”

— === (5.18)

Yo Pc
which implies that v — 0 as p; — 0. Since practically one cannot have v < 1 (or e < 0),
the bilogarithmic compressibility law is not without limitation either. However,
Butterfield [70] shows from compression test data on natural soils, specifically soft clays,
that this law is more accurate than the unilogarithmic compressibility equation over a
wide range of values of effective volumetric stress. Furthermore, the value of p, below

which v > 1 (or e > 0) is higher with the bilogarithmic compressibility law (see Fig. 5.3).



60

A simple inspection shows that in the limit of small strains, the natural volumetric
strain In(v/vo) = In(1 - Av/vg), where Av = vg - v, coincides with the natural volumetric
strain Av/vg of the infinitesimal theory. Thus, the bilogarithmic hardening law
approaches the unilogarithmic law in the limit of small volumetric strains. However,
large deformation analysis requires the use of natural, and not nominal, strains, and so
(5.16) is more robust since it is useful both for small and large deformation analyses. In

light of these desirable features, bilogarithmic law is adopted in the proposed model.

v
A
Vg
Eqn. (5.16)
1.0
Eqn. (5.14)
Pco > Pe

Figure 5.3 Limit of validity: comparison between unilogarithmic and
bilogarithmic compressibility laws

In order to develop a hardening law appropriate for large strain plasticity model,
one needs to exploit the properties of deformation gradient F. The product decomposition

of the F given by (4.27) produces the identity

J =det(F)=J°IP, (5.19)



61

where J° = det(F°) and J° = det(FP). In the space of principal logarithmic stretch,

3 3 3
gy =InJ= m(x1x2x3)=AzE;aA; £y =InJ® =Az_ls§ and eb =InJP =Azlsg. Natural

logarithm of (5.19) then yields
InJ=mJ®+mJP =g, =% +eb. (5.20)
In other words, the product decomposition of F is equivalent to the additive

decomposition of the natural strains (see Section A.3). The rate form of (5.20) is

e
"}:JT*JT =y =45+, (5:21)

J/T=0/v since J=v/ L. v is the specific volume with a reference value vy in the

undeformed configuration. Thus, the hardening law of (5.16) can also be written as

l=3=é$+gg -3 Pc (5.22)
J v Pc

Setting sg =0,q=0and p = pc in (5.11) yields the following expressions for virgin

isotropic loading:

£V ~£V0
Pc =Po €XPp " ; (5.23a)
e _.e
Pe = p_Oex{M]g% =Pe.e (5.23b)
K K K

Substituting (5.23b) in (5.22) and simplifying, one can obtain the following hardening

law expressed in terms of plastic component of the natural volumetric strain:
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Po _@el; o= (5.24)
Pc A-x
Integration of (5.24), produces
Pc =Pc,n exp[@(sg - Sg,n)} =Pc,n exP[G(ss’tr - 83)} (5.25)

where p., and sg’n are the preconsolidation pressure and the plastic natural volumetric

strain at time t,,, respectively. Thus, the hardening law given by (5.16) offers a further
computational advantage in that the evolution equation p, can now be integrated exactly

over a finite load increment.

5.5 Flow Rule
Under the hypothesis of associative flow behavior, the integrated flow rule at any

time t,+; in the space of logarithmic principal stretches takes the form (cf. (4.47))

g€ =&l —A(p—(?—]:, (5.26)
op

For simplicity of notations, in (5.26) and in the following subscript (n + 1) is omitted,; it is
assumed that the unsubscripted variables are all reckoned with respect to time station ty;.

Volumetric and deviatoric components of (5.26) are as follows:

e =s$,’tr —A(pﬂ; e© zee,tr‘_A(p\/Eﬂf_, (5.27)
op 2 oq |is|

In terms of unit vectors i, A ' (5.27), takes the form

esh =S TAl - A(pg—f—ﬁ, (5.28)
q
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Il A .
fr|,ntr___etr/e ,nzee/ee

identities, derived from the following assumptions, are: (i) from the assumption of

tr

where £§ =+/2/3||e|, & &t _ 273

“ Two useful

associative flow rule, n = e / lee

H =s/|ls|. and (ii) from the assumption of convexity of

the yield function, n = ', Exploiting these identities (5.27) can be rewritten as

e,tr of . e,tr of
ey =gV A(p%, e =gg A(pa, (5.29)

subject to the conditions

f(p:a,pc)<0; A920; Af(p,q,pc)=0. (5.30)

e,tr e,tr

In the elastic regime, f(ptr,qtr sPc,n) <0, Ap=0; ey =&y ,€g = gg - Plastic regime )

is realized for the conditions: f(ptr ,qtr sPc,n) >0, Ap>0. ptr and qtr are the predictor

values defined from (5.6) as

e,tr e,tr
ptr _ 6‘1’!8 ) qtr _ G‘P(S , (531)

’

e,tr e,tr
Oey; Ogg
In the elasto-plastic regime, (5.29) and (5.30) can be viewed as a system of simultaneous

nonlinear equations in the elastic strain invariants and the consistency parameter A,

represented by residual vector r and vector of unknowns y, as follows:

g5 —e%" +A00f/op ey
r={gd -&> tr+Aq)6f/6’q ; y=1{¢$ . (5.32)
f A

In order to solve this system iteratively, one can employ Newton’s method over the

following loop:



k+l _ _k kY ok k _ ork
y "=y —(A ) re; Ak=" (5.33)
ayk

k is the local iteration counter. AeR> is the consistent tangent operator. A closed form

expression of A can be written in a compact form with the aid of the following matrices:

Hz[Hu Hu}: 0> flopdp 0% f/opdq|.
(5.34)

Hy Hypl |6%f/oq0p 62 f/6q0q|
G =HD®.
H=VVf ’p e R?? s the Hessian matrix of yield function f with p. held constant. The
C

A matrix then takes the form

1+ A0{Gy; +Kpd®  /0p2pc ) A9Gy, of Iop
A= A(PGZI 1+A(pG22 af/aq (5.35)
Dﬁaf/ap+Dglaf/aq+Kpaf/apc DS,0f/p+DS,0f/69 0
where K p =0%c /asi’, = —@p, is the plastic hardening modulus. Using the yield function
(5.13), one can have: 0f/0p=2p-p¢,0f/0q= 2q/M2, of/ope =-p,

0% flopdpg =-1; Hyy =2,H,, =2/M?, Hj, =Hy; =0; G;; =2Df}, Gy, =2Dp,

- 2
G,; =2D5; /M?, G,, =2D%; /M2,

5.6 Consistent Tangent Moduli

Material tangent stiffness matrix acR>?, defined in the spaces of B and €, is

expressed as

2y =Pi_ Bi (5.36)
68j 58?’“
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For a fully elastic response with volumetric and deviatoric coupling, the matrix a takes

the form

a® = Df’l—ﬂ 6®6+\/zDﬁ(S®ﬁ+ﬁ®6)+—2i(l—ﬁ®ﬁ)+zD§2ﬁ®ﬁ, (5.37)
9g$ 3 36 3

where I is a 3x3 identity matrix, n is a 3x1 vector obtained from the relations

|-

In case of isotropic, linear elasticity free energy function ¥ takes the form

¥y :%K[Sf +&5 +s§]2 +u[(sf)2 +(e§)2 +(8§)2]
(5.38)

L)+ 2uks)’ :
=—Kle +—ples |
5 v 2“ S

where K and p are constant elastic bulk and shear moduli, respectively. K = A +2/3p, A

is a Lamé’s constant. Since p = pp > 0 (see (5.10)), a = 0; elastic shear and volumetric

responses uncouple, i.e., D5, =DS,; = 0 (see (5.12¢)). Now substituting DS, =K, D$,=
3u (see (5.12a), (5.12Db)), tangential elastic moduli of (5.37) degenerates to the familiar

expression for linear elasticity as follows:
a® =K8®8+2p(l—%8®6). (5.39)

In the elastoplastic regime, the tangential moduli matrix a® can be expressed

using strain derivative of (5.5) as

aP_o B g % , 2,9 01 , |2, Ob
ase,tr aee,tr 3 68e,tr 3 age,tr

, (5.40)

where
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o 5(ee/ ) a(ee’tr/ “ee’tr) 1 1
= = = (I--—S@B—ﬁ@ﬁ). (5.41)
el et PR, ee,tr“ 3

ee

Substituting (5.41) in (5.40), and using the elements of the matrix D° to enforce the chain
rule, one can have

(5] € e €
a®P = 5@| D8~V pe, s +\Eﬁ® DS, -%V_, pg, s
6Se,tr age,tr 3

2q (I—lam-ﬁ@ﬁ),
3&:(53’tr 3

Strain derivatives of the invariants £5,and €S are obtained from (5.29) as

ey __0 [se,tr_ (Pﬂ] de$ __© (e,tr

v £ -Acpﬂ).(s.%)
age,tr ase,tr op ase,tr 68e,tr oq

In the expansion of (5.43), one will need the following strain derivative of p,

apC =K ags/
ase,tr p age,tr

+ Kg 5, (5.44)

where K = dp / %S and Kg = dpe / 0e%t"  The expansion of (5.43); and (5.43), takes

the following forms, respectively

€ €
by~ by, 058 o o5 Of 0AQ@ (5.45a)
aae,tr ase,tr op aee,tr
[ (5]
by 0V +bzzﬂ=\ﬁﬁ—a—f ae_ (5.45b)
ase,tr 68e,tr 3 aq ase,tr

where
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o2 f
b11=1+A(p G11+Kp apap 5 b12 =A(PG12;
C
2
o°f
b21 = A(P G21 +K , b22 =1+A(PG22; (546)
[ P 9q0p¢

2
c=1- A(pK o°f
P apop.

Solving (5.45a) and (5.45b) simultaneously yields

e 1 2 0 d
evtr = q I:bzzcs blzn - (bzz —f - b12 f)
" et(b) op oq

€
i {—b21c6+,fzb“ﬁ (bnaf by af) } (5.47b)
e tr  det (b) 3 0q 0q e -

where det(b) = by;by; - byibya.

The strain-gradient of Ag is obtained from the overall consistency condition

of _of o ,of dq , of % _, (5.48)
aae,tr Op aae,tr aq ase,'[r apc aae,tr
Since p, q and p, are functions of the strain invariants, one can expand (5.48) further by

chain rule, and then use (5.47a) and (5.47b) to obtain the following result

OA

ase,tr =318+azﬁ, (5.49)
where
1{d byye - dzb21c+d¢t(b)Ktr of } ay =l[\/z(d2b11 —dlblz)},
e apc el V3
0 0 0 0

- d (bzz a,j: by ag ) d (buaﬁ bzlg{), (5.50)

d, =D, of +DS, of . +kp 2L of , d,=DS of +DS, of

o oq %pc o *oq
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Plugging (5.49) in (5.47) yields
K c €
z‘;r =DPs+ \ED}’zﬁ; azstr =DP s+ \EDlz’zﬁ, (5.51)
66" o6

DP e R*?, consists of coefficients of base vectors & and 1 in (5.47a) and (5.47b), is

defined as follows:

1 [ of of
DP = byl c—a, 2L |+b :
11 det(b)| 22[c ay 6pj 1241 }

Dg = L b12 —1+\/§a2ﬂ - Ebzzaz—a—f— s
det(b)| 2 “&q 2 op

LT of of (5.52)
D}, = —bpa; —~=bylc—a; - ||;
det(b)| oq op
D}, = 1 by 1—\/§32 9\ \/‘g‘bzlaz i\,
det(b)| 2 “oq 2 op
The strain gradients of the stress invariants then take the form
op =Df}’5+\/§Df§’ﬁ; % =D§{’6+\/§D§§ﬁ, (5.53)
age,tr 3 ase,tr 3
where D e R*? is defined as
DP =D°DP. (5.54)
Substituting (5.53) in (5.40) then yields consistent elasto-plastic tangent moduli
aP =[fo -—%ﬂe-]mm\gl)’ffa@m\/%nffﬁ@s
= (5.55)

+ 2 1-5®8)+ 2DPa®i.
3e$ 3
S

For elastic loading, D’ = I, D = D°, and so (5.55) degenerates to (5.37). Thus (5.55)

represents a generalized expression for both elastic and plastic loading. For elasto-plastic
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loading D # I, and so a® loses its major symmetry due to the fact that Df’zp # Dg{) .

Volumetric and deviatoric responses are coupled for elasto-plastic loading even if D® is
diagonal (in case of constant elastic shear modulus, i.e., py > 0, o = 0), since the matrix

D is generally full due to plastic volumetric and deviatoric coupling inherent in the

Cam-Clay model.



CHAPTER 6
HYPERELASTIC-VISCOPLASTIC MCC MODEL

6.1 Introduction

Hyperelastic-plastic MCC model is further extended for viscoplasticity to model
time-dependent secondary compression of phosphatic waste clay. Elasticity response is
based on the stored energy function [68] of (5.9). Consequently, nonlinearity of elastic
moduli and coupling of volumetric and deviatoric elastic responses follow the same
constitutive relations as presented in Section 5.2. Yield function of MCC (see (5.13))is
coupled with a time rate flow rule to simulate viscid response.

Clay is a strain hardening, rate sensitive material that has remarkable
characteristics such as rate sensitivity of sirength, secondary compression, creep and
stress relaxation. Various elasto-viscoplastic constitutive models have been proposed to
describe the rheological behavior of clay. Most elasto-viscoplastic constitutive models
can be classified as overstress models or non-stationary flow surface models. Overstress
elasto-viscoplastic constitutive model was first introduced by Perzyna [72]. The
Zienkiewicz et al. model [73], Adachi and Oka model [74], Dafalias model [75], Katona
model [76], Baladi-Rohani model [77] belong to this category. The key assumption in
these models is that viscous effects become pronounced only after the material
undergoes yielding, and that viscous effects are not essential in the elastic domain.
Overstress model is an outgrowth of classical plasticity where viscous response is

introduced by a time rate flow rule with a plastic yield function. As opposed to

70
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overstress model, in non-stationary flow surface model yield condition of a material
changes with time as plastic straining occurs. Olszak and Perzyna [78] initiated this
concept by introducing the time dependent yield condition. Later Sekiguchi [79],
Dragon and Mroz [80], Nova [81], Matsui and Abe [82], among others, adopted this
concept. Viscoplastic rate equations of the non-stationary flow surface model are
characterized by the stress rate terms.

Overstress viscoplasticity model is adopted in this study to simulate secondary
compression behavior of phosphatic wast¢ clay. Motivations for selecting overstress
model are: (1) the incorporation of MCC yield function is straightforward; (2) the
generality of time-rate flow rule offers the capability of simulating time-dependent
material behavior over a wide range of loading; (3) the formulation is amenable to finite

element implementation.

6.2 Flow Rule
In viscoplasticity formulation, additive decomposition of € takes the following

form
g£=¢%4+¢"P, (6.1)
where ¢ is the vector of principal logarithmic stretches. €° and €'? are the elastic and

viscoplastic components of €, respectively.

For an associative flow &P is given by the relation

e = vcp(f)-%, (6.2)
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where B is the vector of principal Kirchhoff stresses, y is a material property called the
fluidity parameter (units of inverse time) that establishes the relative rate of viscoplastic

straining, @(f) is a scale function (dimensionless) of plastic yield function, f.

: 0
o(f)= { (g(,f) ;; 0 (6.3)

o(f) is called viscous flow function. Two commonly used forms of ¢(f) are:

f N
<p(f)=(f—j ; (6.4a)
0
f N
<p(f)=eXP(?—j -1, (6.4b)
S ]

N is an exponent; f, is a normalizing constant with the same unit as f so that ¢(f) is
dimensionless. Although more elaborate functional forms of ¢(f) may be established,

the forms given by (6.4) appear to suffice for many geologic materials [73].

(6.2) can be written in incremental form as
of of
Ae"P = yAto(f) == = Ayo(f) ==, 6.5
TAto(f) 6[3 Yo(f) % (6.5)
where Ay = yAt. Substituting (6.5) in additive decomposition of natural strains, i.e.,

e=e®+eP =5 4 sg, one can write the flow rule as
0
e =Sy @(f)a—g- (6.6)

Volumetric and deviatoric components of (6.6) are as follows:

30f s

e __eftr of . e _&tr _ 20] 8
Ey =ty Ay o(f) o’ ¢ =¢ Ay o(f) 2248 (6.7)
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In terms of unit vectors n, At (6.7); takes the form

of .
£ =S TAT Aw(f)a—gn, (6.8)

N = ee/”eell. Since A =h'r

(see Section 5.5), (6.8) can be expressed in terms of scalar coefficients. Consequently,

where €5 =2/3|e|, eg & tr \/2/3||etr”,ﬁtr=etr/”etr

(6.7) can be rewritten as

e =St~ ayo(f)L; e =St —Ayo(f) L. 69)
op oq

In the elastic regime, f(p ,q ,pc n) <0, o(f)=0;e5 =% 1t JE¢ = sg T
Viscoplastic regime is realized for the conditions: f(ptr ,qtr ,Pc,n)>0, o(f)> 0.

ptr and qtr are the predictor values as defined in (5.31). In the viscoplastic regime, (6.9)

can be viewed as a system of simultaneous nonlinear equations in the elastic strain

invariants, represented by residual vector r and vector of unknowns y, as follows:

y { oo +Ay¢(f)6f/5p} , ={8‘3}, 6.10)

e e + Ayo(f)of/oq es

One can employ Newton’s method (cf. (5.33)) to solve this system iteratively while the

tangent operator AeR>? of (5.33) now takes the form

A=|:A“ A12-|= 61‘1/68% 5r1/asg . (611)
Ay Anl |or,/o6% or,/oe8

Individual components of A are derived as
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Opdpe op toq  Pape

App = AY[iP(f)af(Degg Dgz%)*'(P(f)Glz}

0 0 0
AZI—AYI:(P(f) f[De 6£+D§16—£+Kp apj;)“P(f)Gzl}

Ay = 1+AY[(P (f)aé [De of +D5, Z—Q“P(f)Gzz]-

2
A11=1+Ay{(p(f{Gn+Kp o J J (f)af(De 9, pe af+Kp o1 H

(6.12)

Kp=0pc/ oS = —Op, (see (5.25)) is the plastic hardening modulus,

0'(f) = d0(f)/ 8f . Matrices D°, G are defined in Sections 5.2 and 5.5, respectively.

6.3 Consistent Tangent Moduli

Consistent tangent moduli matrix in elasto-viscoplastic regime a® eR>*, defined

in the spaces of B and ¢, is expressed as

Y :?Ei:ﬂ_ (6.13)
l-] 58j 68?,n
J

Following the developments of Section 5.6, one can obtain an expression of a®,

identical to (5.42), i.e.,

e e e e
a®P = 5®| DY, Gy +D, Oes \Fn@) DS, Gey +DS, Oes
oe€ e,tr ase,t 3 aee,tr age,tr

2 (1-15®5-ﬁ®ﬁ).
385’tr 3

Strain derivatives of the invariants ss and sg are obtained from (6.9) as

oe$ e’
EIE P Y PR
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In order to expand (6.14) to the lowest order, one will need the following strain

derivatives:

G dey Oeg
i a;0+a, ‘; +a 5_,
age, Iy ase, T age,tr
% f s oes
= 348 +35 12 )
apase,tr ase, r age,tr

2 € €

Ot oe
——'—a f = G21 v G 5
aqase,tr age,tr

Coefficients of (6.15a) and (6.15b) are given as

a1=Kg—a—f—; 32=Df1‘al+D§1'a—f+Kp-a[“; a3=D1e2g]—(+D§2‘a‘]:§
Ipc op oq e op aq
2 2
a, =Kg——a—f;, as =Gy, +Kp o7
Opdpe Opdpe

where Kp = 6pc/6s$, =-@pcand Kg = apc/ass;‘f = Op (see (5.25)).

oes oes
by, e\;r 2 = ¢,
oe™ oe™’
oe$ ol .
b21 e‘;r 22 t = —025 + \/gll,
oe” oe”

where

byy =1+a,4y @'(f)%wvcp(f)Gzl; by, = a3Av<p'(f)—§§+Aw(f)Gzz :
by = azAY(P'(f)Z—(fl*"AY(P(f)Gzl; by =1+33AY(P'(f)g£+AY<P(f)G222

¢ =1-aAy ‘P'(f)%§ Cy = alAYCP'(f)Z—cfl-

(6.15a)

(6.15b)

(6.15¢)

(6.16)

(6.172)

(6.17b)

(6.18)
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Solving (6.17a) and (6.17b) simultaneously yields

o 2.p. s 2.p
i DP&+ \Engn; T DD 5+ 3D12)2n.
Coefficients of D € R are given as

-1
Dp = b C +b C Dp = :
11 t(b)( 22%1 12 2) 12 d t(b) 12
1
DY, = ——(=byc; ~byiey);

de t(b)

where det(b) = by1by; - by bya.

(6.19)

(6.20)

Substituting (6.19) in the expression of a® (cf. (5.42)) then yields consistent

elasto-viscoplastic tangent moduli as follows:

a® =|p%P _ 24 5®o+\F f§’8®ﬁ+\/§szpﬁ®8
98§ 3 3

24 1-5®d)+2DPi ®.
3e$ 3

6.21)

D®P = D°DP e R¥*2. Note that (6.21) and (5.55) have identical expressions. (6.21)

represents a generalized expression for both elastic and plastic loading. For elastic

loading, D® = D° since D’=1I and so (6.21) degenerates to an expression of a° identical

to (5.37).






CHAPTER 7
LINEARIZATION

7.1 Preliminaries

Some useful formulas are summarized below. These will be helpful for
linearization of strong and weak forms of coupled equations (see Chapter 4).

The first of these formulas is the Piola transformation, introduced first in Section
4.2. Lety € R™ be a vector field in spatial configuration ¢(B). Then, the Piola

transform of y in reference configuration B is

y=JF"l.y, (7.1)
provided that motion ¢ is regular in B. The following equation holds for y, Y.
DIVY =Jdivy. (7.2)
Proof of (7.2) is given in Section A.7. This identity may be extended to cases where Y
and y are vectors derived from tensors of order greater than or equal to two by fixing all
but one of the tensor’s legs (for example, fixing one leg of the Kirchhoff stress tensor T
produces a vector of Kirchhoff stresses).
Following are linearization of some basic terms, one would need for subsequent
development. Let du be the variation of the displacement field; then the linearization of
F and F"' at any configuration ¢«B) are given, respectively, by

LF =F +graddu-F=F + GRADdu; (7.3a)
LF!=F1-F! gradsu=F!-F!.GRADSu-F!. (7.3b)

77
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Derivations of (7.3a) and (7.3b) are given in Section A.8. Linearization of the Jacobian

and the rate of the Jacobian at spatial configuration ¢.(B) are given, respectively, by

L) = J + J div(Su); (7.4a)
Li=J+ J[div(Bv) — grad v : grad* (5u) + div(Su) div v}. (7.4b)

See Section A.9 for derivation of (7.4a) and (7.4b).
Linearization of the reference saturated mass density p, = Jp at the spatial
configuration ¢,(B) is
Lpg = Pg + Py J div(du). (7.5)
Proof of (7.5) is given in Section A.10. Note that py is not constant since, as pointed out
previously (see Section 3.5.2), the total mass of the soil-water mixture in B is not
necessarily conserved in ¢«(B). The variation of p, reflects the amount of fluid that enters

into or escapes from the soil matrix due to the variation of the Jacobian.

7.2 Linearization of Strong Form

The results discussed in the previous section can be applied for the lineraization
of strong form or the field equations of linear momentum and mass conservation. Since
the field equations are mixed formulation involving finite deformation u and Kirchhoff
pore pressure 9, linearizations are derived consistent with the imposed infinitesimal

variations du and &6.

7.2.1 Equation of Equilibrium
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Let E=DIVP + pog be the linear momentum equation (see (4.3)). Substituting

(3.55) and (3.56), E can be rewritten as

E = DIV (P+6F_t)+ Jog. (7.6)

Taking the variation yields

SE = DIV (5P +05F ¢ +69F‘t)+ 5(Jp)g

(1.7)
:DIV(A :8F +08F ¢ +86F_t)+ 5(Jp)g.

A is the first tangential elasticity tensor of order four. A has the structure Ajj = OPy/0F .

One can write from (7.5)
8(Jp)g = pw I div(Su)g. (7.8)
Now, using (7.1) and (7.2) one can express
Jdiv(Su) = DIV (8U) = DIV (JF‘l ~8u), (1.9)
where dU is the Piola transform of du. Substituting (7.9) in (7.8) results
5(Ip)g = py J div(3u) g = p DIV (JF'1 -8u)g. (7.10)
Substituting SF, SF! from (7.3), 8(J p) from (7.10) in the expression of 3E of (7.6),

linearization of E may be written as

LE =E + DIV(A : GRADSu) - DIV (eF‘t -GRADtSu-F‘t)

(7.11)
+DIV (aeF“ )+ pwDIV (JF“ : Su)g.
A crucial step in the linearization of the linear momentum balance equation is the

evaluation of the tangential elasticity tensors of the solid matrix. Four of them are

introduced in this section: the tensors A, D, a and d. Each of these tensors can be derived
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directly from others. For example, A can be obtained from D using the following

expression

A=2F-D-F'+S®1; Ajjk1 = 2FimFknDmjnl +Sj18ik- (7.12)
See Section A.11 for derivation of (7.12). D = 6S/0C (i.e., Dyjn = 0Smj/0Chry) is the
second tangential elasticity tensor of order four. Constitutive relation (4.36) and pull
backs of the Kirchhoff effective stress tensor 7 yield the following expressions of the
second Piola-Kirchhoff effective stress tensor S as

3
S=F1.1.Ft=3p,MY; M®=F"1m® F (7.13)
A=l

(A)s

Ba’s are the principal Kirchhoff effective stresses and m'*”’s are the dyads formed by

juxtaposing the principal directions of the elastic stretches, as given explicitly by (4.35),.

Using the chain rule, from (7.13); one can obtain the following expression for the tensor

D as

3
Z Z aBAM(A) OM® + 3B, M® (7.14)

A 1B= 1 A=1 oc
since dep/0C = M®)/2 (see Section A.14).

By the symmetry of both S and C, and by the axiom of material frame
indifference, the tensor D possesses both the major and minor symmetries such as Dy =
Djii = Dijix, Dijt = Diij. Spatial tangential elasticity tensors a and d may be obtained
from the push-forwards of A and D as

ajjkl = FjaFlbAjakb; (7.153)

dijki = 2FiaFjbFicFidDabed- (7.15b)
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a and d have the symmetries [83]: ajj = awij, dijt = djia = dijix = diiij. A push-forward of

all the indices of D gives the following expression for the spatial tensor d

3 3 3
d:ZZ—maﬁA @Wem® +23 p,d®. (7.16)
A-tBo1 OFB A=l

Here d® is the push forward of SM“/8C as

(A)
oM b

oC cd

d_]kl FaFjbFicFld (7.17)

For the general case of left Cauchy-Green tensor b having distinct eigenvalues A2, 732

and ?»% , d¥ takes the form

d® =DL[Ib-b®b+I3x,;2(1®1—1)]
A

+ DL[AZ (b @m®) + m@ ®b)——;—D’A7\.Am(A) ®m(A)} (7.18)

[13 (1 ®m™ +m® ®1)]

1 1
where (Ip )j51g = 5 [bikb jl +bjlb jk] I3 =det(C), Lkl = E[Sik5 j1 +9i1d jk] :

D, = (12 —A2 )(XZA A% ), D), =803 —2I;A, — 2137»;\3. {A,B,C} denotes an even
permutation of the indices {1,2,3}. This expression is strictly valid only if the
eigenvalues are different since D5 = 0 otherwise. Although it is possible to derive a
similar result for the case of repeated eigenvalues [19], from a computational standpoint
it is preferable to reduce this situation to the general case of distinct eigenvalues by

introducing a perturbation of the repeated roots. For example, in case of repeated roots, a
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small perturbation of +£10%x repeated eigenvalues is used in PlasFEM to obtain a general
case of distinct eigenvalues.
The spatial counterpart of (7.11) may be derived directly from Piola

transformation. Then, the linearization of E in the spatial picture takes the form

LE =E +div(a: grad u) - div(e gradt6u)+ grad (860) + Jp, div(du)g. (7.19)
An equivalent form to (7.19), using the spatial tangential elasticity tensor d, is
LE =E +div[(d+1®1): graddu]- div(e gradtSu)+ grad (80) + Jp div(du)g, (7.20)

since a = d +1®1(see Section A.12). Here (1 ® l)ijkl = ;19K represents the initial

stress contribution to the spatial stiffness. Comparing term by term, equivalence between -

(7.11) and (7.19) can be established. Exploiting the Piola identity of (7.2), one can show
that DIV(A:GRAD &u) = div(a:grad du) since A:GRAD &u is the Piola transform of J!
a:grad du and grad J = 0 (see Section A.1). Similarly, second divergence terms can be
shown equivalent noticing that  F'- GRAD' 8u - F*' = 6 grad' du - F"' is Piola transform
of I''(6 grad" Su). Expansion of the third divergence term of (7.11) yields DIV(86 F*) =
GRAD 60 - F' + 80 DIV(F") = grad 80 since DIV(F") = 0. Equivalence between the last

terms can be derived from (7.9).

7.2.2 Equation of Flow Continuity

Let M=DIVV +DIVV be the equation of flow continuity for a saturated soil-

water mixture in material reference (see (4.9)), where V and V are the Piola transform of
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v and V, respectively (see Section 4.2). Then, the linearization of M at any configuration
¢(B) is

LM =M+ DIV 8V + DIV §V. (7.21)
One needs expressions of 8V, 8V for linearization of M. First consider variation of V,
6V=6(JF‘1 -v)=5JF‘1 v+IsF Ly F L v (7.22)
From (7.4a), (7.9) and (7.3b), one can express

SIF L.v= DIV(JF‘1 -au)rl v

(7.23)
JoF L.y = _J{F-l -gradSu}~v - _JF ! .GRADSu.-F ! v.

Substituting (7.23), one can rewrite (7.22) as
5V = es(JF‘1 -v)= DIV(JF‘1 -au)rl .v-JF ' .GRADSu-F 1 +JF L ov. (7.24)

From (4.50) and (4.52), generalized Darcy’s law can be written as

¥=-k- (grade +§J. (1.25)
Jgpw g

Piola transform of V yields

~

Vzm‘l.v:_K.(_G_R_LAD_e+JFt._g_], (7.26)

gPw g

where K =F ! .k-Ftis the pull-back permeability tensor. K and k are assumed

symmetric in following derivations. Using chain rule, one can expand 8V as

5 = _aK.(GRADe IRt .E)-K -(Mw(m‘)-g—]. (1.27)
gPw g gPw g

Substituting 8J from (7.23); and 8F from (7.3a), one can write
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B(JFt)z DIV (JF"1 -6u)Ft +JGRAD'su. (7.28)

Substituting (7.28) and rearranging, (7.27) can be rewritten as

&V =K. {M + [DIV(JF-I ~8u)Ft + JGRADtSuJ : 5}
gp
W s (7.29)
~5K .[GRADG +JF! -EJ,
gPw g

where

8K = —F ! -{2 Sym(GRADSu K- Ft)— 1+ eO)DIv(JF‘1 -Su)%'i} F~t.(7.30)
(<]

If permeability tensor k is assumed to be varying with the deformation or void

ratio of soil skeleton variation of k can be expressed as

8k =(1+eg) Jdiv(6u)%l£= (1+¢,)DIV (JF_1 -5u)g—k , (7.31)
e e

where ey is void ratio of the soil-water mixture in reference configuration. See Section
A.17 for derivations of (7.30) and (7.31).
Using (4.8) and (4.17), M can be written in spatial description as
M =Jdivv+JdivV = J+ T divv. (7.32)
Corresponding lineraization takes the form

LM = M +3(J + Jdiv¥)

. (7.33)
=M +8] +8Jdiv¥ + I 8(div¥).
Substituting (A.31), J§(div¥) can be expressed as
18(divv) = T div(5¥) - grad(J¥): grad 'su, (7.34)
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since JgradV = grad(J¥) by knowing that grad J = 0. Substituting (7.34) in (7.33) then

yields

LM = M + 8] + div[5(J¥)] - grad(J¥) : grad 'Su,
since

div[3(J¥)] = div(8J ¥) + div(J V)
=grad8J -V +8J divV + grad J - &v + J div(5V)
= (GRAD 5)-F! ) V+38Jdivv + I div(8V)
=8(GRADJ)-F~1.¥ + 85 divV + J div(5V)
= 8JdivV + J div(&V).

Component terms of (7.35) are given as

&F = J[div(&v) — gradv : grad (5u) + div(5u) div v];

= -k-[grade +J§);
2w g

grad(80) — grad 6 - grad du
EPw

8(I¥) = -k [ + Jdiv(6u)§]
g

~(1+ eo)Jdiv(Su)a—k-[igL‘ieJr JE}.
o | pwg &

(7.35)

(7.36)

(7.37a)

(7.37b)

(7.37¢)

(7.37a) and (7.37b) are obtained directly from (7.4b) and (7.25), respectively. Derivation

of (7.37¢) is given in Section A.19.
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7.3 Linearization of Weak Form

Linearization of weak form G(¢, IT, n) of (4.13) takes the form

LG=G+ Lgradn:(d+t®l):grad8u dV+L(Sedivn—egradtn:grad?}u)dV
—prJdiv(Su)n:ng—LBn-St dA.

(7.38)

where Su, 86 and 8t are the variations of the displacement vector, Kirchhoff pore
pressure, and traction vector, respectively.
First integral term of (7.38) is derived from the variation of grad n: 1 (see Section

A.20). The variation 8(0divn) = 86divn + 6 5(div 1) produces the second integral term

upon substitution of the identity &(div n)=divdn - gradtn :graddu = —gradtn : grad Su
following (A.31) (note that 1 = 0 since 1 is a vector of arbitrary virtual displacements).
The third integral term emanates from the linearization of Po (see (7.5)). The last integral
term is derived from a straight-forward linearization of the traction vector t.

Upon substitution of (3.55) and (3.56), linearization of weak form G(4, I, n) in

material description (see (4.12)) can be expressed as

LG =G+ [ 8(GRADn:P-pyn-g)dv - [, 8 -t)da
=G+ fBS(GRADn :P)dV + st(GRADn :(eF“))dV (7.39)
- [8(pon-g)dV - [ 5(n-t)dA.
Variation of the first integrand is given as 3(GRAD n: P) = GRAD n: A : GRAD 6u (see

Section A.21).Variation of the second integrand in material description may take the

form
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a(GRADn : (GF_t))= 30 GRADn :F~' -6 GRADn: (F_t -GRAD'su- F‘t).

Upon substitution of (7.10), variation of the third integrand yields

8(pon-g)= waIV(JF'I -SU)n ‘g

Substituting all these identities in (7.39), one can obtain linearization of G in material

description as

LG =G+ LGRADn:A:GRADBu dv + L 80GRADn :F~tdv

- [ 6GrRADY frt .GRAD'u-Ft )av

- ‘LpWDIV(JF'1 -Su)r) :gdV - Lﬁn-& dA.

(7.39) and (7.40) are equivalent expressions.

Linearization of weak form H At (¢,I1,y) of (4.25) is given as

LH = Hy + L%Jdiv(éu)dv BB, Lgradw.L - grad 56 dV

gPw

-2BBo Lgrad v Sym(g)l—(— . gradtﬁu) -grad6 dV
w

~BBo .Lgrad\p-[gradSu ~(div du)1]-k-E av
g

+BBO(I+eO)Lgradw-(div 5u)1-g—:-{?§+1—§-}1dv
w

~BBo [ w3QdA.

(7.40)

(7.41)

The first integral term of (7.41) results from the variation of J (see (7.4a)). The second,

third, fourth and fifth integral terms result from the variation of grady - J¥ (see Section

A.22). The last term results from the variation of Q.

Linearization of weak form H ¢ (¢,I1, ) of material description (see (4.26)) is

given as
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LH, =Hy + L%DW(JF_] -8u)dV+[3[30 GRADW-Q)K—-GRADSGdV
w

—2BBOLGRAD\U-F_1-Sym[GRAD8u- K 'Ft)-F_t-GRADedV

gPw
—BBOLGRADW-I«“‘1 .GRADSu-K -Ft .78 qv

g
+BBy LGRAD\;/-K-DIV(JF“1 -Su)Ft B av
g
+5Bo(l+eo)LGRADW'F—1 'DIV(JF_1 5u)K pt ~{G;RAE+JFt -E}dv
e Pwe g
~BBo [ wQaa.
(7.42)

The first integral term of (7.42) results from the variation of J (see (7.4a) and (7.9)). The -

second, third, fourth and fifth integral terms result from the variation of GRADv - \Y%
(see Section A.23). The last term results from the variation of Q.

Considering term by term, one can show that (7.41) and (7.42) are equivalent
expressions. Equivalence between first integral terms can be obtained from (7.9).

Equivalence between second integral terms can be drawn from the relations:

grady = GRAD F! , grad80 = GRADSO-F !, and K = F’1 k-FL, Similarly,
v

the third integral terms can be proved equivalent since

k ] = Sym(—k—-gradt Suj .
gPw gPw

Sym[GRADSu- K
gPw

-th = Sym(gradSu :
By contracting and rearranging the remaining volume integral terms of (7.42) into

equivalent spatial descriptions, one can obtain identical expressions for the fourth and

fifth integral terms of (7.41).



CHAPTER 8
FINITE ELEMENT FORMULATION

8.1 Finite Element Framework

System of equations for consolidation problem can take a general form

k k k
Kn+18dp 4y =14 (8.1)
at any iteration k of time step ty+;. K is the global stiffness matrix or consistent tangent

operator, 8d is the vector of incrementa! generalized displacement defined as

sdf il =akil-ak,,. 82)
For large strain consolidation, d consists of solid-phase displacement vector u and

Kirchhoff pore pressure vector 6. f is the vector of residual out-of-balance forces defined

as

f11f+1 = (Fext )41 — Fint )§+1 (8.3)
Fexr is the vector of externally applied forces, e.g., gravity forces, prescribed surface
tractions, fluid potential, flow rate etc. It is assumed that Fgxt is constant for a given time
step to+1. Fint is the vector of internal nodal forces. fis formed from the coupled
equations of weak form G(¢, I, n) and H(¢, II, y) (see Chapter 4), integrated over the
problem domain.
Finite element formulation solves the system of equations ieteratively using some

standard methods (e.g., Newton-Raphson method) so that f, at some configuration, is

89
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minimized within a tolerance (e.g., 1.0x10™). Fiyr is function of the generalized

displacement vector d, and can be approximated by Taylor series expansion

k
OF
(FinT )p a1 =FlNT(dIl§i%)= FINT(dg+1)+( aI‘I;Tj (dgi% "d11§+1)+ O(). (84)
n+1

Neglecting the higher order terms O(h), the exact solution is approximated by

k+1 _ gk oK
dn+ zdnilzdnﬂ’“( argT

)—1[( Fext)n+1 —FINT(dxli-H)]. (8.5)

The Jacobian matrix OFyr/0d is equal to the tangent operator K of (8.1). It is evaluated at

each iteration due to material and geometric nonlinearities so that

k
(95——““] =KE4;. 86)
od Jp41

Substituting (8.6), (8.4) and (8.5) can be reduced to (8.1)
At the end of each iteration, displacement vector d, i.e., the configuration is
updated according to (8.5). If equilibriui is achieved within a prescribed tolerance, the

solution is started for next time step. Otherwise, a new iteration is performed.

8.2 Matrix Equations -

This section discusses derivation of matrix forms of the weak form equations and
their variations (see Sections 4.3 and 7.3), amenable for finite element formulation, for
D9P4 axisymmetric element (see Section 9.1). Because of the simplicity of the
linearization of the integrands in spatial description, (7.38) and (7.41) are implemented

in finite element code.
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According to the standard procedure, one needs interpolation function or shape
function matrices for approximating the solid phase motion ¢ and pore pressure field 6.
Let N*(x) and N°x) be two distinct matrices of spatial interpolation functions
representing ¢ and 9,’ respectively. Let u’(x) € R™¢ represents spatial displacement field

describing ¢, nsd being the number of spatial dimensions. In matrix form
uh(x)=N¢(x){u+ug}, (8.7)

where u, u; € R™ are the vectors of unknown and prescribed nodal displacements,
respectively, nq is the number of displacement components for an element ( = number of
displacement degrees of freedom per node x number of nodes).

Similarly,

o (x)=N9x){6+0,}, (8.8)
where 8" e R represents spatial Kirchhoff pore pressure field 6. 0, 8, € R™ are the
vectors of unknown and prescribed nodal Kirchhoff pore pressures, respectively. Now,
arbitrary weighting functions nand y may be interpolated in a similar fashion in terms of

their nodal values 1] and  as follows:

=N vPE=Nw7, (8.9)
where 1 € R™ and {j € R™. For D9P4 elements nsd =2, nd = 9, np = 4, nq =18. N® and
N® matrices for D9P4 element are given in Appendix B.

Employing these preliminaries of (8.7) to (8.9), one can formulate the necessary

finite element equations. Let the weighting function 1 be approximated by arbitrary nodal
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values T € R™ via (8.9), then the finite element equation for weak form of the balance of

linear momentum, G(¢, I1, 1) (see (4.13)) may be written as

Gh(¢,n,ﬁ)=ﬁt[NS(u)+NW(e)—FEXT (8.10)
where
NS(u) = LBt{'c}dV (8.11a)
NV (0)= thNe{9+9r}dV = theh dv (8.11b)
Fexr = .LpONq)tg dv + LBN¢ttdA (8.11c)

For axisymmetric element, Kirchhoff stress vector {1} is defined as {111, 122, T33, T12,

1} subscripts 1,2,3 denote radial, axial and circumferential directions, respectively. B
is the spatial strain-displacement transformation matrix, b = {1}t B . See Appendix B for

the structures of B and b. By expanding terms, one can have ﬁtBt {t} = gradn : 1. Thus,

(8.11a) produces the first integral term of (4.13). (8.11b) represents the second integral
term of (4.13) following the identity b1 = ﬁtbt = divn. Third and fourth integral terms

of (4.13) can be obtained from (8.11c) using the identity n =7 N dt . It is important to

note that p is reference mass density. So, it is a non-constant term. Following (7.5), Po is
updated at each iteration as (p) }14'_,_11: (Po) 21+1+ {J div (Suh )}}H_l; in equivalent matrix
form (po) h1= (Po) n+1+ {Ibdu} .

Next, finite element equation of weak form for the balance of mass, H 4t (9,11, )

(see (4.25)) may be written as
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AHR (0.TL§) = GI(u) - BoAt D(6) - oAt Hexp ] = 0, (8.12)
where
k
J(u) = LNet[JnH - ZochnH_m]dV (8.13a)
m=1
®(0) =P LEt(N)n AV +(1-P) LEL (W), dV (8.13b)
Heyr = LNet[BQnH +(1-B)Qp ]dA (8.13¢)

tn Ot h

From (8.9),, one can have NQ\TJ =y =y, and so (8.13a) and (8.13¢)

produce the first and third integral term in (7.42), respectively. E, E, in (8.13b) are the

gradient-pressure transformation matrices (see (B.8)) computed with respect to
coordinates x and x,, respectively. Since, \ptEt = grad y and \|/'CE}l = (grad w)n , one
can obtain second integral in (7.42) from (8.13b).JV is computed from (7.36b) using the
relation grad 6 = EB.

Finite element equation for the first variation of the weak form G(¢, I'l, n)) (see

(7.38)) may be written as

8GM (9,1, ) = 7 [K g u + K ¢ 56 (8.14)

where
Ky = L(Bt(ﬁ+T+Ie)B-pWJN¢tgb)dV (8.15a)
Kgp = —thNedV (8.15b)

Su and &6 are the first variations of u and 6, respectively.
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D is a rank-two material stiffness matrix. Terms of rank-four tensor d in (7.38) is
arranged in D (see (B.9)) in such a way that scalar product term ﬁtBtf)B du yields an
equivalent expressions for grad n" :d: grad Su”, Initial stress matrix T (see (B.10)) is

assembled from fourth-order tensor (t @ 1) = 7)1 Six such that ﬁtBtf)B Su = grad n" :c:

grad Su”. Similarly, ﬁtBtIeB du produces an equivalent expression for the scalar
product term 6" grad' n" : grad du®. Iy is defined in (B.11). The remaining terms in (7.38)

can be proved using the identities b Su = div (5u") and bn = div(nh )
Finite element equation for the first variation of weak form Hgt (6,1, y) (see
(7.41)) may be written as

~AtHR. (4,11,5) = 7 [K ggou + Kgg 56)] (8.16)

where
Kop =- [ IN%'bav L E'=B+IE'OB- t
0 = +BPodt [| ——— E'EB+IE'0B-J(1+eq)E'0B |dV (8.172)
w

BByAt
Kee = _PPo~

LEtkEdV (8.17b)
Pw§g

Matrix forms for the first two integrals in (7.41) are trivial. With respect to the third

integral in (7.41), which arises from geometric nonlinearity, the following identity can be

obtained by direct expansion:

2grady!! - Sym [k-gradt(Suh)]-gradB -yt E'=Bsu, (8.18)

where

(1l
]
n
+
[x}

N

(8.19)
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For D9P4 axisymmetric element

(1]

_{kne; ki, 0 k50, klle,z:l (8.208)

P ky8, k05 0 kpnb,; k6,

(4]

[klje,j 0 0 kpo; 0
2:

0 ky; 0 0 kb J.J (sumon j=12).  (8.20b)

i
with respect to the fourth integral in (7.41), which also arises from geometric

nonlinearity, the following identity can be obtained from direct expansion:

h

grad y -[grad(&uh)— div(&uh)l]k £ _y'Ele,Bsu, (8.21)
g

where

@1_

0 -k -k k 0
_l[ 128 128 K»ng ] (8.22)
g

~kpg 0 -kpg 0 kpg
for D9P4 axisymmetric element. Matrix from of the fifth integral term in (7.41),

representing the variation of permeability with Jacobian, is obtained from the following

identity

grad y -div(Suh)l-a—k-{gmde +J§} =j'E'®, Bsu. (8.23)
o (pw8 8

For D9P4 axisymmetric element

aklju- 5k1j0. ok yj

d J 5 i 3 v; 00
= c ’ e 4 e s .
0, = dky; ok 5 Ok (sumon j=1,2). (8.24)
L L vi 00
Oe ~’ oe Oe
where v =§r3-d—e+J§_
Pwg g
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Since 1 and  are both arbitrary, the conditions stated in (8.10) and (8.12) can
be satisfied by the following coupled vector equations:

Balance of linear momentum:

ry(u,8) = Fgyr — {Ns(u)+ NW (e)}: 0. (8.25)
Balance of mass:
ro(u,6) =BoAt Hpxr — {J(u) - BoAt &(6)} = 0. (8.26)
For numerical analysis, the problem boils down to determining the configurations defined
by the nodal values u and 6 at which (8.25) and (8.26) are simultaneously satisfied.

Residual force vector and displacement vector of an element, f, and 8d., respectively, are

given as

,0 )
g = {@ON o, ={ NS (8.27)
ro(u,0) 50
Consistent tangent operator discretized at element level, K, is assembled from coefficient

matrices (8.14) and (8.16) as

_| Koo Koo
Ke_[K% KeeJ (8.28)

Global matrices K, fand 8d of (8.1) are assembled from K., f., and &d.,
respectively, according to the node numbering scheme of the problem domain. In
PlasFEM, incremental displacements 8u and pore pressures 80 are actually grouped on a

nodal basis in order to preserve bandedness of the global stiffness matrix which costs less

CPU time for matrix inversion.
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In general, matrix K. is nonsymmetric and indefinite. The lack of symmetry of K
is a consequence of solving a non-symmetric consolidation problem. However, there are

conditions which results in a symmetric K. even if the problem of consolidation is

t

inherently non-symmetric. Obviously, K. being symmetric requires that Kgg = Kee ,

which is true if and only if the permeability tensor k is symmetric. Furthermore, for small
strain analysis the Jacobian J is identically equal to unity, while the second integral in

(8.17a) vanishes identically since it originates from geometric nonlinearity. Thus, for this
condition, Ke¢, = K;;G . Under the same setting imposed by the assumption of small

strains, the last term in the integral of (8.15a) also vanishes, since this term is simply the

linearization of the constant Jacobian. Thus, under the assumption of small strains,

K¢¢ = K‘§> o provided that material stiffness matrix D is symmetric.






CHAPTER 9
CENTRIFUGE MODELING

9.1 University of Florida Centrifuge Equipment

The University of Florida currently has two fully operative geotechnical
centrifuges. The University of Florida geotechnical centrifuge used in this research was
originally designed and built in 1957 for the Sperry Rand Corporation, by the Rucker
Company. It was initially designed for the purpose of testing vacuum tubes for the
National Aeronautics and Space Administration (NASA). In the early 1970's it was
donated to the Department of Mechanical Engineering and installed at the Weil Hall
Annex basement. A large variety of geotechnical engineering investigations has since
been conducted with this centrifuge such as, the study of flexible retaining walls in
granular soils, the study of pile friction freeze, the study of bearing capacity of shallow
foundations on sands, etc. Sink hole collapse potential and consolidation/sedimentation
processes in phosphatic clays also have been investigated in the past.

A schematic drawing of the uninstrumented centrifuge is shown in Figure 9.1. It
has two rotating arms, each with a length of approximately one meter and each with a
platform where the testing container and counterweight can be mounted. The choice of
several sizes of containers can be made by the researcher to model the problem at hand.
A protective metal housing encloses the entire centrifuge and access to the centrifuge is

possible through two swinging doors and one hinged top panel.
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The centrifuge is powered by a 5 HP electric motor and is controlled by a Parajust
electronic direct-current (DC) motor controller, both installed in 1989. This size of motor
allows long flights at significant g-levels. Electrical and hydraulic connections to
instrumentation inside the centrifuge is achieved through a 40 channel slip ring unit. The
slip ring unit is fixed to the top cover and remains motionless while the center shaft is
spinning. It has a series of metal brushes that maintain electrical contact with the shaft.
Any instrumentation of the model is connected to an electrical panel existing on the
centrifuge arm. From here the signals pass through the slip rings, via electronic wiring,
into the data acquisition system.

The experiment can be monitored in motion via a camera mounted on the center
shaft, rotating with the same speed as the container. The camera used in this investigation
is a Panasonic closed-circuit TV camera. This camera originally had a stationary lens
installed but to achieve a more precise monitoring, a zoom lens was purchased and
installed.

The container used is a cylindrical aluminum container with a height of 25.6 cm
and a diameter of 16.2 cm. Inside of this container a plexi-glas bucket can be placed and
this is the actual container for the soil sample. The height of this plexi-glas bucket is 16.5
cm and the diameter is 13.9 cm. The aluminum bucket rotates around hinges fixed to a

bucket housing (see Figure 9.2).
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Figure 9.3 Test monitoring in centrifuge
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There is a slot cut in the aluminum container that allows the soil sample to be
monitored through the plexi-glas. A mirror was installed above the container (on the
bucket housing) such that, when the container was accelerated up into a horizontal
position, the sample could be monitored laterally by the camera via the mirror. The whole
setup is shown in Figure 9.3. A ruler was fixed to the plexi-glas bucket which allowed

settlements to be monitored with a precision of 0.25 mm.

Table 9.1 Centrifuge Specifications

Manufacturer Parametrics

Model 6051 (modified !)

Driving System 5 HP electric motor

Capacity appr. 2.4 g-ton

Radius (Center-Container Hinge) 93 cm

Radius (Center-Container Floor) 109 cm

Dimensions of soil container 151.8cm?/16.5cm’

(Area/height)

Electrical Pick-Ups 40 slip rings

Fluid Transmission 2 hydraulic slip rings

Test Recording Closed Circuit TV, Panasonic Camera
(WV-1410), zoom lens (M6Z 1212)

9.2 Centrifuge Testing

The purpose of centrifuge testing was to study the rate and magnitude of

settlement of a prototype soil deposit of phosphatic waste clay. Other purposes included
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determining the appropriate time scaling exponent (by performing modeling of models),

monitoring the clogging phenomena of wick drains. Approximately 20 successful
centrifuge tests were conducted in this research, some of which duplicate each other in
order to ascertain the validity of the results.

Different methods and combinations of tests were used throughout the centrifuge
testing program. Testing was performed at two different g-levels, with and without wick

drains, with and without surcharges, and with different widths of wick drain. In the

following the tests and their results are presented.

9.3 Modeling of Models

Tests for modeling of models were performed in order to determine the exponent
for scaling times from centrifuge consolidation tests to prototypes. Modeling of models
involved performing a series of centrifuge tests at a minimum of two different
acceleration levels and comparing times for equivalent solid contents or heights of

interface.

The basic equation used in the modeling of models theory is expressed as

tp =tmi 0y =tmyn}, 9.1)
where

t, is the prototype time,

tmi is the time in model 1,

tma 1s the time in model 2,

n; is the ‘g’-acceleration in model 1,

n; is the ‘g’-acceleration in model 2, and

x is the time scaling exponent.
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(9.1) expresses the relationship between two centrifuge models and the same
prototype with a given solids content. Hence, this equation does not only relate prototype
to model, but also relates model to model. From (9.1) one can obtain the following

expression for x as

9.2)

An experimental study presented by Bloomquist [84] concerning Kingsford waste clay,
found that the time scaling exponent varied from 1.6 to 2 depending on the solid content
of the clay being tested. Bloomquist [84] also found that any increase in solid content
above 22% was found to be in the consolidation phase, and a time scaling factor of 2 was
appropriate.

In this study, two models were used to perform the modeling of models. The first
model had an initial height of 12 cm (~ 4.7"), corresponding to a prototype height of 8.4
m (~ 27.6") when exposed to a ‘g’-acceleration of 70 (n = 70). The second model had an
initial height of 7.6 cm (~3") which corresponds to the same prototype height as the first
model when exposed to a ‘g’-acceleration of 110 (n = 110). Four tests were conducted in
the modeling of models: Two tests at 70 g (with and without wick drain) and two tests at
110g (with and without wick drain). All four tests had a surcharge applied, corresponding
to a prototype surcharge height of approximately 6 m sand (~ 20 feet). A comparison of

the settlements from the 2 tests with wick drains can be seen on Figure 9.4.
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Modeling of Models @70 & @110 'g" w. full-size Wick Drain
Sqrt. Time [min'?)
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——— e — + ;
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Figure 9.4 Settlements from 70 g and 110 g tests

Bloomquist [84] derived the following equation relating the change in height

during consolidation to the change in solid content.

So

e

Si is the solids content at time (i),

5= ©93)

where

Sy is the initial solids content,

H, is the initial height,

Hi; is the height of the sample at time (i), and
G; is the specific gravity.

Table 9.2 in the following is produced from (9.2) and (9.3).
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Table 9.2 Modeling of models results

Samples at 110g with Wick Drain and Surcharge

Initial heights: 120 and 76mm

Initial solids contents: 32.75 and 32.78%

Settlement [mm] Time Scaling Exponent Solids Content [%]
5.00 1.34 34.59
8.00 1.35 35.77
10.00 1.68 36.60
11.00 1.83 37.03
11.50 1.94 37.25
Variation of Time Scaling Exponent with Solids Content
(from modeling of models: 70'g's & 110 'g's)
375000 ;- S —
| 1
= 37,0000 ) “
2 | —— With Full-size Wick Drains|
= 36.0000 . ; and Surcharges
2 i
E 35,0000 T
34.5000 - R

100 110 120 130 140 150 160 170 1.80 1.80 200

Time Scaling Exponent

Figure 9.5 Variation of time scaling exponent with solid content
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In Figure 9.5 the variation of the solid contents with the time scaling factor as the

consolidation advances can be seen. Notice that there is a significant “jump” in the curve

at a time scaling factor of approximately 1.35. This was also found by Townsend and
Israel [85], however, with a much lower solid content (15%). Plots of the solid content

versus time should produce essentially parallel curves and this is evident in F igure 9.6.

Centrifuge Testing, Polk County Parkway

[——70g i
|—m—110g/

Solids Content [%]

1.00 10.00 100.00 1000.00
Model Time {min])

Figure 9.6 Solid content versus model time

The curves on Figure 9.6 also have approximately equal final solid contents as expected
(at the point where the test at 110 g is terminated).

The theoretical limit for the time scaling exponent is 2.0 and once consolidation is
reached the exponent should reach this maximum value. The results from this modeling
of models study indicate that the time scaling factor approaches the value of 2.0 when
consolidation is progressing, however, in the final stages of the tests. Thus, from these
considerations it is apparent that scaling up the centrifugal model to prototype times is an

incremental procedure and the appropriate time scaling exponent must be used.
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Accordingly, a semi-logarithmic plot the percent of total settlement U versus elapsed
time (in log scale) is plotted for the two tests (70 g and 110 g), and a table of the time
scaling exponent for different percentage of total consolidation is established as shown in
the following.

The percent of total settlement U at time t; can be determined by:

U= HE(())———% -100% %4
where:

H, is the initial sample height,

Hg is the final sample height, and

Hi; is the height of the sample at time t;.

The time scaling exponent x for different values of U can be determined from the

following equation:

log[tio) ¢
x=—192=50044 1og| 20 |, 9.5)
( 1 10) t
log| — 10
70
where
t7o is the time to reach a given value of U at 70 g’s,
ti10 is the time to reach a given value of U at 110 g’s.
In order to determine the elapsed model time for different percentage of
consolidation the wick drains were reduced to a quarter of their original width (i.e., new
width = 2.5cm) so that they do not act as reinforcement and thus hinder the consolidation

process. Elapsed model time versus the percentage of total consolidation is shown on
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Figure 9.7. The trendlines are third-order polynomials with reasonable R>-values. The

equations for the trendlines and Equation 9.5 are used to produce Table 9.3 which shows

the time scaling exponent for different percentages of consolidation for the two tests at 70

gand 110 g.
Centrifuge Testing, Polk County Parkway
1000.00 - : ‘ 1 ;

| ! { : :
E ‘ ‘ H ;
E ! :
o 100.00 -
E ' - .
5 ! i—e—70g f

J : |
é ! ' ; | —m—110g j
3 1000 : 5 i‘ j : - i Poly. (709) |
2 - . ’ =Poly. (110g) |
- L e
w ! ! i l

o o

o o

1.00 - 1 | | ; |
000 1000 2000 3000 40.00 50.00 60.00 70.00 80.00 90.00 100.00
Percentage of Total Consolidation
704 110 g:
y=0.001x" - 0.0654x2 + 4.8456x - 18.356 y = 0.0007% - 0.0752>¢ + 3.9025x - 25.271
R?=0.9971 R? = 0.9994

Figure 9.7 Trendlines for model time versus percent of total consolidation

Table 9.3 Time scaling exponents x for different percentages of settlement

U [%] t7o[min] t110 [min] X
10.00 15.98 6.93 1.85
20.00 67.04 28.30 1.91
30.00 105.47 43.02 1.98
40.00 135.00 55.31 1.97
50.00 172.34 69.35 2.01
60.00 230.14 89.36 2.09
70.00 317.28 119.52 2.16
80.00 449.53 164.05 223
90.00 608.42 227.13 2.18
100.00 751.21 312.98 1.94
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Table 9.3 shows that the modeling of models produced sensible time scaling exponents,

with an average value of 2.03 as shown on Figure 9.8

Centrifuge Testing, Polk County Parkway

Ave. =2.03

0 -
10 +
20 =
30
40 -
50 -
60 -
70 ¢
80 ~
90 ;
100 +— e et e e -+ : —

1.50 1.60 1.70 1.80 1.90 2.00 2.10 220 2.30 2.40 2.50

Percentage of Consolidation

Time Scaling Factor

Figure 9.8 Variation of time scaling exponent with percentage of

consoliadtion

It is concluded from the two conducted modeling of model analyses that the time
scaling exponent is close to 2 with reduced size wick drains and less than 2 for the tests

with full size wick drains and this is kept in mind during the finite element analyses.

9.4 Centrifuge Test Results

The testing program started with 4 tests of the slime with wick drains (no
surcharge), and at both 70 g and 110 g. These tests took very long time and there were
hardly any settlement. The next step was the tests at 70 g, and 4 tests were performed at
this g-level. Two with wick drains and iwo without wick drains. The results from these

tests can be seen in Figures 9.9 and 9.10.
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Figure 9.9 presents the prototype settlements for these four tests. The total

settlements for the samples without wick drains were between between 0.67m and 0.70m

and the total settlements for the samples with wick drains were between 1.58m and

1.61m.

Settlement {m]

Centrifuge Consolidation @ 70 'g’ with Surcharge
Time [days)
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

0 S S ; . . .
0.1 9
02 + Tt
0.3 + S
0.4 + A .
05 J‘» N: s —_——
06 - v taa.a. f—&—W/O Wick #1 |
oI o ; WIO Wick #2 |
09+ : —h— With Wick #1 |
B =3~ With Wick #2
12 +
13 +
14 +
15+
16 +
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Figure 9.9 Prototype results from 70 g tests

The total improvement in settlement, due to the implementation of wick drains,

was 0.91m and for the time of termination of the two tests without wick drains, the two

tests with wick drains had settled approximately twice as much. The normalized

prototype results are shown on Figure 9.10. It can be seen that 90% of the total settlement

is reached after approximately 800 days (2.19 years) for the samples without wick drains

and 1050 days (2.88 years) for the samples with wick drains.

The tests performed at an acceleration of 110 g were the major portion of the

performed tests. The prototype settlements from 6 tests with and without wick drains are

shown on Figure 9.11.
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Centrifuge Consolidation @ 70'g* with Surcharge
Time [days]
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Figure 9.10 Normalized prototype results from 70 g tests

Centrifuge Consolidation @ 110 g with Surcharge
Time [days]
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Figure 9.11 Prototype results from 110 g tests

The difference in settlement between the two groups of samples in Figure 9.11 is
not as well-defined as the tests at 70 g but still recognizable. The group without wick
drains settles to a level of approximately 1m, while the group with wick drains reaches a

level of settlement of approximately 1.3m. These results are normalized on Figure 9.12,
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and it can be seen that 90 % of the total settlement is reached after approximately 1250

days (low) to 1600 days (high). This corresponds to 3.4 years and 4.4 years, respectively.

Centrifuge Consolidation @ 110g with Surcharge

Time [days]
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

0.00 —— : ;
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€ ; | —— SWOW#1-1101
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S 040 - | |
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Figure 9.12 Normalized prototype results from 110 g tests

Different widths of wick drain: 10 cm (full size wick), 2.5 cm (1/4 size wick), and
1.25 cm (1/8 size wick) were tested at 110 g’s in the centrifuge. These results are
presented in Figure 9.13. The trend shows that the wider the wick drain, the more the

settlements. This makes a logical conclusion.

Centrifuge Consolidation (110g), Polk County Parkway
Time [days]

0 500 1000 1500 2000 2500 3000 3500
0.00 +—— . e

: =—¥—No Wick, avg. of 2
tests

1
| |
| —h—1/8 Size Wick,
i avg.of 2tests |
| i
[
| —€—1/4 Size Wick,
avg. of 2 tests

Settlement [m]

| —— Full Size Wik,
avg. of 3 tests

Figure 9.13 Prototype settlements with multiple size wick drains



CHAPTER 10
NUMERICAL EXAMPLES

This chapter presents numerical simulation examples of one and two-dimensional
(plane strain) hyperelastic consolidation. Effects of large strain on consolidation
settlement and excess pore pressure dissipation are compared with the same for the small
strain formulation.

Time integration for all the numerical simulations in Chapters 10 and 11 was
carried out by the one-step, first-order accurate, unconditionally stable backward
difference scheme (see Section 4.4) obtained by setting k =1, and Bo =P =a; = 1. The
simulations, both the large strain and small strain formulations, were performed by a

displacement-based finite element code PlasFEM.

10.1 Mixed Element

The type of elements used for consolidation simulation greatly affects the
accuracy of the solution. It was found that only a few combinations of interpolation
functions were capable of providing accurate solutions without incurring problems such
as spurious pressure modes, mesh locking or poor convergence rate. The accepted test on
the stability and convergence of a particular element is the Babuska-Brezzi [84, 85]
condition. Hughes [86] has proposed an approximate method, based on the constraint

ratio. He compares the number of equations provided by the displacement unknowns to

114
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the number of incompressibility constraints. If the ratio is close to unity, the element has

a tendency to lock and will perform poorly under incompressible conditions.

® o ‘4&

O o——O

O displacement + pore pressure node

@ displacement node

Figure 10.1 D9P4 mixed element

For the two-dimensional problems with mixed displacement/pressure, the D9P4
element (biquadratic 9-node displacement interpolation with a bilinear 4-node pore
pressure interpolation) passes the Babuska-Brezzi condition and has a high constraint
ratio. Consequently, D9P4 mixed elements, as shown in Figure 10.1, were employed for

all finite element meshes used in Chapters 10 and 11.

10.2 One-dimensional Hyperelastic Consolidation

A stress-free hyperelastic porous solid skeleton is considered for one-dimensional

consolidation example. The free energy function W for linear elasticity is given in (5.38).
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The assumed values of the material parameters are A = 57.7 kPa, n = 38.5 kPa (equivalent
to a Young’s modulus E = pn(3A + 2p) / (A + 1) = 100 kPa and a Poison’s ratio v = 0.5, /
(A + ) = 0.3), and constrained modulus D = A + 2p =134.7 kPa.

The FE mesh, represented by a column of 10 D9P4 axisymmetric elements, is
shown in Figure 10.2. The bottom base of the mesh is impervious and fixed with respect
to vertical displacements. Free drainage (i.e., zero excess pore pressure) is allowed on

top. The vertical permeability is assumed to have a value k, = 8.46x10™ m/day and the

unit
X2 X2
4 7 \
z,7Z \".‘
\ hydrostatic |\ isochrone
Hy=5m Latt=0 att=0
| A—x » X i — 0, kPa
-1 m»] 50 140

Figure 10.2 FE mesh and initial pore water pressures for one-dimensional
consolidation problem
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weight of water pwg = 10 kN/m?. The coefficient of consolidation can be calculated as Cy

=k,D/(pwg) = 1.14x107 m?/day. Normalized time factor is calculated as T = cvt / Ho?,
where Hy is the initial thickness of the soil column. During the consolidation stage, time

steps are increased according to the equation Aty = 1.5 At,. This results in nearly equally
spaced data points when the time history responses are plotted on a logarithmic time axis.
Excess pore pressures are generated by 2pplying a vertical downward Cauchy step load

of Aq ™) = 90 kPa at the top of the soil column.

15
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Terzaghi Solution ®  Small Strain (PlasFEM)

Figure 10.3 One-dimensional hyperelastic consolidation: variation of total potential
with time

Figure 10.3 shows a comparison of the variations with respect to time of the fluid

potential [I=TI° + =6/ (Jpwg) *+ x; at a Gauss Point A near the impervious base.
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Point A is initially situated at a distance of the 4.894 m from the top of the undeformed
soil column. Here the potential IT takes the physical meaning of being the total hydraulic
head at this particular Gauss point. PlasFEM prediction of small strain formulation
matched quite well with the analytical solution from the one-dimensional linear
consolidation model of Terzaghi. Prior to consolidation, the fluid potentials for the small
strain and the large strain models are the same and are 14 m, 9 m of which is the transient
part produced by the 90 kPa imposed vertical load. Figure 10.3 shows that the fluid
potential predicted by the Terzaghi solution decays to the initial steady state value of
1™ = 5 m since the height the soil column remains essentially the same at 5 m due to
the small strain assumption. The large strain solution however approaches a steady-state
value of IT"*# = 3,24 m representing the final compressed height of the soil column. The
large strain prediction is compared with the same reported in [89]; both the predictions
are in exact match (see Figure 10.3).

The validity of the large strain solution can be checked by simple manual
calculations (see Section A.24). The Jacobian J at the steady-state condition is calculated
as 0.6484, which is the ratio of the final to initial column heights for the case of one-
dimensional compression. Thus, J = 0.6484 = 3.24/5, and is constant throughout the
height of the soil column. The final Kirchhoff effective vertical stress is equal to
AqXIrehiom — JAq(©ehy) = 58 35 kPa, which is also distributed uniformly throughout the
height of the soil column at steady-state condition.

Figure 10.4 shows the isochrones of Cauchy pore pressures plotted for different

values of equivalent time factor T. Cauchy pore pressures were calculated as € =
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gKirchhoM/ 1 at the Gauss points. Kirchhoff pore pressures at Gauss points were

interpolated from the global solution of nodal values. Note that isochrones predicted by
the large strain model move spatially as a result of the large deformation effect. For

comparison purposes, the isochrones computed from the Terzaghi model are also plotted

Terzaghi Solution Large Strain
5-
| d
3 -
3
%
2 i
1 4
0 - j — 1 ;
150 100 50 0 50 100 150

Cauchy Pore Pressure, kPa

——T=0.003 %-T7=0.018 4T=0216 ~+—T =3.702

Figure 10.4 One-dimensional hyperelastic consolidation: isochrones of constant
Cauchy pore pressure

in Figure 10.4 for the small strain formulation. The explicit expression of excess Cauchy

pore pressure for one-dimensional small strain consolidation is given by [90]

m=co 26e(Cauchy)

oe(Canety) P57 Bo " snmz) ool MPTS M =Zam 1), (101

m=0
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where Z = z / Hy is normalized depth, eg(Cauchy) is initial excess pore pressure at t = 0.

Z and z are measured from the top of the consolidating stratum (see Figure 10.2).

Finally, the variation of average degree of consolidation U with respect to time
factor T is compared in Figure 10.5 for large and small strain formulations. The analytical
expression for U for one-dimensional small strain consolidation, based on Terzaghi’s
linear consolidation model [30], is given by [90]

m=c

U=1- Y 2z exp(—MzT); M=Z(2m+1). (10.2)
2 2
m=0M

= o o

o o o))

o o o
T T

0.00001 0.001 0.1 10

Time Factor

Avg. Degree of Consolidation

—a— Large Strain (PLasFEM) —— Terzaghi Solution
= Small Strain (PlasFEM)

Figure 10.5 One-dimensional hyperelastic consolidation: variation of
average degree of consolidation with time factor
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U(T) for FEM solutions is plotted as the ratio of settlement at time T to the ultimate

settlement at the end of consolidation. The small strain solution predicts a slower rate of
consolidation than the large strain solution because the latter solution considers the
reduction in length of the drainage path, which enhances the dissipation of excess pore
pressure. Reduction of coefficient of permeability of the soil as it consolidates could have

offset this effect, but this factor is not taken into account in this example.

10.3 Plane Strain Hyperelastic Consolidation

Closed-form solutions are available for the problem of plane strain, small

deformation consolidation of an elastic half-space subjected to a uniform strip load. This -

problem may be simulated with a numerical algorithm for the case of small strain
formulations and solutions compared. An attempt was made to replicate these solutions
numerically and demonstrate the significance of the large strain effects on the response of
a consolidating hyperelastic soil medium deforming in plane strain.

Figure 10.6 shows the finite element mesh used for the two-dimensional plane-
strain problem. The problem consists of a strip load of half-width a = 5 m applied over a
hyperelastic soil layer 20 m thick. The mesh is composed of 132 D9P4 elements with 575
displacement nodes and 156 pore pressure nodes. The bottom of the clay layer is assumed
rigid against vertical displacement, perfectly draining, and subjected to a constant value
of total potential equal to IT = 20.0 m. The material parameters are A = 0 and p = 250 kPa
(corresponding to a Young’s modulus E = 500 kPa and a Poisson’s ratio v = 0). A strip
load of Aq ©®**) = 120 kPa is applied nearly instantaneously (At = 10 days, which is

negligible compared to the t = 10000 days required to reach complete consolidation) at



122

e X

B>
0

o

=120 kPa

Figure 10.6 FE mesh for plane strain hyperelastic consolidation example

the ground surface, and is then held constant while the soil undergoes consolidation.
Permeabilities are k = k;; = ky; = 8.64x10™ m/day, and k;; = ky; = 0; fluid mass density is
pw = 1.0 Mg/m>. The soil elements are assumed to be initially stress-free.

Figure 10.7 shows the closed-form solution for the time-variation of the centerline
excess pore pressure at depth z = a beneath the strip load on a semi-infinite elastic half
space [91]. Along with this solution are the predictions of the numerical model. For
convenience, the excess pore pressures have been normalized with respect to the strip

load intensity Aq according to the expression (0 - 6¢) / Aq, where 6y is the reference
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hydrostatic Cauchy pore pressure. The point corresponding to z = a in the mesh of Figure
10.6 is node A, which is situated at a depth of 5 m from the base of the embankment. The
small strain FE solution readily provides the time variation of the pore pressure at this
point, since node A is a pore pressure node. However, the large strain model needs the

values of the Jacobian to determine the Cauchy pore pressures, which are not readily

S.s.a.e.mu.B. N

Norm. Excess Pore Pressure

|
0.01 0.1 1 10 100
Time Factor

------- Borja et al. (1998) = Large Strain (PlasFEM)
Schiffman et al. (1967) —e— Small Strain (PlasFEM)

Figure 10.7 Plane strain hyperelastic consolidation: variation of centerline excess pore
pressure at depth z = a with time

available at the nodal points. The nearest Gauss point to node A is chosen to assess the
accuracy of the numerical model. For consistency in presentation, both the small strain
and large strain FE solutions are evaluated at Gauss point B located at horizontal and

vertical distances of 0.211m from node A, see Figure 10.6. A normalized time factor, T =
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ct / a%, where ¢ = 2pk / (pyg) and t is elapsed time since the beginning of the
consolidation, is used to describe the solutions in the time domain. Large strain prediction
matched well with the results of [89].

A comparison of the curves shown in Figure 10.7 suggests that higher pore
pressures are induced in the large strain case by the sudden application of the external
load at the early stage of the consolidation process. Thereafter the dissipation occurs at
almost the same rate up to a time factor T ~ 5.0, when the large strain solution stabilizes
while the small strain solution is still decreasing. Note that the large strain solution
asymptotically approaches a nonzero excess pore pressure since the final steady-state
pore pressure is numerically different from the initially hydrostatic pore pressure due to
variation in the geometric configuration of the problem. As expected, the small strain FE
solution agrees better with the closed-form solution, but is not identical because of the
limitation of the FE model in representing a half space and because of the use of a finite
time increment to impose the strip load, among other factors. Both the closed-form and
FE solutions exhibit the Mandel-Cryer effect, or the initial increase in excess pore
pressure, which is a characteristic feature of the coupled solution [60].

Figure 10.8 shows the isochrones of constant Cauchy pore pressures predicted by
the small and large strain models along the vertical line X; = 0.211 m beneath the strip
load. This line is defined by the column of Gauss points closest to the axis of symmetry.
Note that the large strain solution predicts a steady-state isochrone defined by a nearly
straight line with an apparent slope equivalent to a fluid with mass density of about 1.23
Mg/m>, which is greater than the assumed fluid density of 1.0 Mg/m’. This is a result of

local artesian condition characterized by steady-state upward seepage created by the
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Figure 10.8 Plane strain hyperelastic consolidation: isochrones of constant Cauchy pore
pressure

reduction in thickness of the consolidating layer, as the top and bottom drainage
boundary conditions remain unchanged. The Cauchy pore pressure at the bottom
boundary converges toward a steady-state value that is slightly higher than the initial
value. This is a consequence of prescribing the essential boundary condition in the form
of Kirchhoff pore pressure, which is amplified by the inverse of Jacobian that is less than

unity due to volumetric compression of the soil.



CHAPTER 11
POLK COUNTY EXPRESSWAY

The Polk County Expressway is a multi-lane toll expressway constructed around
Lakeland, Florida. The length of the expressway is about 39.4 km (24.5 miles). Major
parts of the road construction crossed land areas that had retention ponds of phosphatic
waste clay, deposited approximately 40 years ago as slurry from the phosphate
beneficiation process. This chapter discusses the numerical predictions using finite
element analysis of both primary (consolidation and swell) and secondary (creep)
consolidation settlement of the phosphatic waste clay found in the construction site, in the
presence of vertical wick drains and subject to surcharge loading, unloading and
subsequent reloading (i.e., road construction).

Two different constitutive relations, hyperelastic-plastic MCC and hyperelastic-
viscoplastic MCC models, are used for prediction of nonlinear responses of the soil
skeleton of the phosphatic waste clay. The first addresses inviscid (time-independent)
plasticity, i.e., for a given effective stress, deformation of the soil skeleton is constant
over time. This is evident in Figures 11.18 to 11.20 where settlement reaches an
equilibrium state once the excess pore pressure due to preloading has dissipated and the
clay deposits have attained static effective stresses. The second model simulates the
secondary compression response of the clay. Secondary compression (or creep
settlement) continues even after the excess pore pressures have significantly dissipated

(see Figures 11.23 to 11.25) since the stress-deformation response of the clay skeleton is
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usually time-dependent, i.e., clay deposits under sustained effective stress undergo a slow
rate of compression over a long period of time.

In the case of very thin specimens such as those used in laboratory consolidation
tests, compression usually occurs in two distinct phases (see Figure C.1): an
instantaneous primary consolidation and a delayed secondary compression. For
specimens of finite thickness, e.g., retention ponds of phosphatic waste clay, the
instantaneous and delayed effects are both present during the primary consolidation

phase. Secondary compression becomes predominant after dissipation of most of the

€XCESS pore pressures.

11.1 Phosphatic Waste Clay

Phosphate, the primary source of phosphorous in inorganic fertilizers, is obtained
from mining. The matrix of the excavated material is typically composed of 1/3
phosphate, 1/3 granular materials (sand), and 1/3 clays (montmorillonite, illite, and
kaolinite) [84]. The beneficiation process converts the matrix to a dilute solution from
which the phosphate is skimmed, and the granular material screened, leaving a dilute clay
slurry for disposal.

Initially, the slurry (at the construction site of the Expressway) was introduced to
mine cuts with a solid content of about 5%. Over the years the clay deposits underwent
self-weight consolidation rendering higher solid content. At the time of the expressway

construction the solid contents were in the range of 33% to 50% and the natural moisture

contents were in the range of 100% to 200%.
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Crucial to numerical simulations is the obtaining of representative material
properties for use in the proposed constitutive models (Chapters 5 and 6). Studies of soil
characteristics, both field and laboratory, performed by PSI (a geotechnical consulting
firm), FDOT’s Materials Office and the University of Florida’s Geotechnical Centrifuge
Laboratory were utilized for this purpose. A brief summary of soil characteristics data,
obtained from different sources, is presented in the following.

Soil characterization conducted by PSI in 1995 classified the phosphatic waste
clay as very soft with SPT blow counts typically ranging from 2 to 4. The average depths
of the slime deposits were on the order of 7.6 m (25 feet) and were underlain by
undisturbed soils. In some cases slime deposits were close to the existing ground surface,
but in several cases they were overlain by 0.9 to 2.1 m (3 to 7 feet) of very loose to loose
clayey sand spoils which were knocked over from spoil mounds during reclamation.
Hard, indurated clay/silts were found at depth ranging from 9.1 to 13.7 m (30 to 45 feet).
PSI concluded the following soil properties from both insitu and laboratory tests. The unit
weight was in the order of 11.80 to 13.36 kN/m>. The field vane shear strength in the area
of interest varied from 12.3 to 22.3 kPa. The tri-axial undrained shear strength varied
from 4.8 to 27.6 kPa. Wide variation was noticed in the field vane and tri-axial shear
strengths depending on the site or location of the soil specimens. Series of laboratory
consolidation tests were conducted by PSI at two different stages: initially at the
reconnaissance stage and later after the placement of the surcharge loading. Summaries
of these test results are presented in Tables 11.1 and 11.2 and corresponding SPT boring

logs are shown in Figures 11.1 and 11.2, respectively.
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1 Mixed grayish-brown sand, trace silt and light gray clayey fine sand, (A-2-6)
2 Light brown to greenish-gray sand, some silt to silty fine sand, trace
phosphates, limestone and cemented sands, (A-2-4)
3 Light greenish-gray to orangish-brown sandy silt to clayey silt, trace
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Light gray limestone
Light greenish-gray to brown phosphatic clay slime, (A-7)
Brown to greenish-gray sandy clay, (A-6), (A-7-5), (A-7-6)
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Figure 11.1 SPT boring logs for tests reported in Table 11.1 (Source: PSI)
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Figure 11.2 SPT boring logs for tests reported in Table 11.2 (Source: PSI)



131

Table 11.1 Summary of laboratory consolidation test results (initial exploration)

Test Boring | Station | Offset | Depth of | Initial Precon.
Date No. No. Shelby Void C. Cs | Pressure
Tube Ratio (tsf)
07/28/92 | TB-5-67 | 742+00 | 131"'R | 10" -12" | 2.09 | 0.82 | 0.07 0.83
07/28/92 | TB-5-71 | 746+00 | 133’ R | 10" 12" | 5.93 | 2.93 | 0.25 0.41
07/28/92 | TB-5-93 | 774+00 | 155"R | 10°-12" | 7.67 | 3.76 | 1.00 0.30
07/28/92 | TB-5-96 | 778+00 | 158" R | 10" —12" | 5.50 | 2.90 | 0.41 0.26
Table 11.2 Summary of laboratory consolidation test results (later exploration)
Test Boring | Station | Offset | Depth of | Initial Precon.
Date No. No. Sample | Void | C. Cs Pressure
Ratio (tsf)
08/01/97 | BH-1A |1744+80 | 60" R 36°0" 238 | 0.95 | 0.215 1.48
08/25/97 | BH-2 | 1774+40 | 100°'L | 380" 3.40 | 1.51 | 0.36 1.47
07/31/97 | BH-3 | 1775+10 | 100'R | 360" 297 | 133 | 0.37 1.68
08/14/97 | BH-4(1) | 1779+50 | 80" L 36°0" 3.46 | 4.01 | 0.25 1.13
08/01/97 | BH-4(2) | 1779+50 | 80" L 40°0” 3.41 | 1.55 | 0.462 1.05

The station numbers reported in Table 11.1 are survey baseline stations which

were numbered differently from construction stations of Table 11.2. Survey baseline

stations 742+00 to 778+00 are the same as construction centerline stations 1742+00 to

1778+00.

The centrifuge tests performed at the University of Florida revealed that the clays

would not clog as a result of the consolidation process (i.e., sealing the drainage

boundary). The following parameters were determined from centrifuge and laboratory

tests [92] on recovered clay samples.

The Atterberg limits of the slime were as follows:

Liquid limit (LL): 215%
Plastic limit (PL): 67.15%
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Plasticity index (PI): 148.85%
Water contents, determined before each individual test, were in the order of 190% to
205%. Solid contents for the recovered samples were consistently in the order of 33%.
The specific gravity was estimated as 2.70. This is recognized as a reasonable value for
phosphatic clays [93]. Void ratios, determined prior to each test, typically ranged from 4
to 5.5. A series of CRS (constant rate of strain) consolidation tests was performed to
study correlations among void ratio, effective stress, coefficient of permeability,

coefficient of consolidation, etc. Figure 11.3 and 11.4 present variations of coefficient of

CRS-test, Polk County Parkway
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Figure 11.3 Permeability versus void ratio plot from CRS consolidation test

permeability and average effective stress with void ratio, respectively. See [92] for study

of the other test results.
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CRS-test, Polk County Parkway
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Figure 11.4 Void ratio versus effective stress plot from CRS consolidation test

11.2 Wick Drain and Instrumentation

To facilitate faster consolidation, an embankment acting as surcharge of 4.6 to 7.6
m (15 to 25 ft) of sand was placed on top of the existing ground surface of the slime
deposit area. The surcharge load was aided by vertical wick drains, approximately 30,000
in number, installed in a triangular pattern with side lengths of 1.52 m. Figure 11.5 shows
a plan of the wick drain installation. The wick drains, consisted of a polypropylene core
of fluted configuration, designed for flexibility and maximum water flow. The
permeability of the geotextile membrane surrounding the plastic core was 1.48x10"!
m/day. A schematic of the consolidation process through the wick drains is shown in

Figure 11.6.
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Figure 11.5 Plan of wick drain installation
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Figure 11.6 Principle of consolidation with wick drains

Surcharge Area No.1 (station 1727 to 1746) and Surcharge Area No. 2 (station

1768 to 1782) of the Polk County Expressway, Section 5, were instrumented by Atlanta
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Testing & Engineering (a geotechnical consulting firm) for monitoring field settlements
and pore pressures. Figures 11.7 and 11.8 show the instrumentation plans.
Instrumentation included settlement plates, pneumatic settlement cells, piezometers, and
vertical inclinometers. Monitoring was carried out over a period of approximately 700
days from the beginning of embankment placement. Field observation data were

subsequently compared with numerical prediction as presented in the following.

11.3 Constitutive Model Parameters

Due to nonlinear elasticity, estimation of appropriate elastic moduli parameters

such as L, o, po, 830 is crucial for using the constitutive models discussed in Chapters 5

and 6. For this purpose, laboratory one-dimensional consolidation (oedometer) tests were
simulated to obtain the constitutive model parameters for primary and secondary
consolidation. The hyperelastic-plastic MCC model was used for the prediction of
primary consolidation only while the hyperelastic-viscoplastic MCC model was used to
predict both primary and secondary consolidation. A FE mesh for the oedometer cell
(radius 3.18 cm, height 2.54 cm), composed of 2x2 D9P4 axisymmetric elements, is
shown in Figure 11.11.

Figures 11.12 and 11.13 present the predictions and measurements of laboratory

void ratio vs. log (applied pressure) response for large and small strain primary
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Figure 11.11 FE mesh for oedometer cell
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consolidation, respectively. Table 11.2 contains a summary of the laboratory

consolidation test results. Constitutive model parameters, used for the simulation of

laboratory results, are presented in Tables 11.3 and 11.4. For all the simulations it was
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Figure 11.13 Small strain, hyperelastic-plastic simulation of laboratory consolidation tests

assumed that the critical state slope M =1.0, 830 = (.0, saturated unit weight of clay ys =

12.58 kN/m’. The permeability coefficient k was assumed to have a constant value of

6.9x10”° m/day. See Figure 11.3 for estimation of permeability coefficient.
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Preconsolidation pressures pco (see Table 11.2) were obtained from the laboratory test

plots using the Casagrande construction method.

Note that the MCC model’s compressibility parameters A and « are different from
the C; and C; (compression and swell indices, respectively) of the laboratory test data (see
Tables 11.3 and 11.4) due to the different stress paths. A and k are defined for isotropic
loading while C; and C; are obtained from the one-dimensional consolidation test (Ko
condition [64]). Also note in Tables 11.3 and 11.4 that the A and k for small strain were
slightly different than those for large strain in order to produce similar stress-deformation
responses. Since the large strain mode! undates geometry whereas the small doesn’t, the

stresses which are function of geometry, will be different unless the stiffness is adjusted.

Table 11.3 Hyperelastic-plastic MCC model parameters for large strain simulation of
laboratory consolidation tests

Boring Lo o Po A K Laboratory Data

No. (kPa) (kPa) C. Cs

BH-1A 25.0 1.0 0.8 0.22 0.04 0.95 0.215
BH-2 25.0 1.0 0.6 0.28 0.05 1.51 0.36
BH-3 25.0 1.0 1.2 0.25 0.045 1.33 0.37
BH-4(1) | 25.0 1.0 0.5 0.43 0.065 4.01 0.25

Table 11.4 Hyperelastic-plastic MCC model parameters for small strain simulation of
laboratory consolidation tests

Boring Lo o Po A K Laboratory Data
No. (kPa) (kPa) C. G
BH-1A 25.0 1.0 0.8 0.12 0.036 0.95 0.215
BH-2 25.0 1.0 0.6 0.145 0.048 1.51 0.36
BH-3 25.0 1.0 1.2 0.135 0.045 1.33 0.37
BH-4(1) 25.0 1.0 0.5 0.40 0.065 4.01 0.25
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Table 11.5 presents material parameters for the large and small strain simulations

of the laboratory consolidation test that produce similar stress-deformation responses

(Figure 11.14). The A and « values in Table 11.5 fall within the range of values presented

Void Ratio, e

10 100 1000
Applied Pressure, kPa

—a [ arge Strain —e— Small Strain

Figure 11.14 Hyperelastic-plastic simulation of laboratory consolidation
test: large strain versus small strain

Table 11.5 Hyperelastic-plastic MCC model parameters for
simulation of laboratory consolidation test

Parameter Large Strain Small Strain
uo (kPa) 25.0 25.0
o 1.0 1.0
K 0.06 0.05
A 0.3 0.18
M 1.0 1.0
po (kPa) 1.0 1.0
peo (kPa) 142.0 142.0
e 0.0 0.0
€vo
Ysar (KN/m?) 12.58 12.58
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in Tables 11.3 and 11.4. As a result, this set of A and k values are used for subsequent
predictions of field primary consolidation data for different pond depths.
Figure 11.15 presents predictions and measurements of laboratory axial strain rate

data, primary and secondary consolidation combined, for the case of the large strain
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Figure 11.15 Large strain, hyperelastic-viscoplastic simulation of laboratory consolidation

tests
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Table 11.6 Hyperelastic-viscoplastic MCC model parameters for large strain simulation
of laboratory consolidation tests

Boring Lo o Po ¥ N A K Laboratory Data
No. (kPa) (kPa) C. Cs

BH-1A 250 | 1.0 | 0.8 |7.0x107 | 1.5 0.12 {0.036| 095 | 0.215
BH-2 250 | 1.0 | 0.6 | 7.0x107 | 1.8 | 0.145| 0.048 | 1.51 0.36
BH-3 250 | 1.0 | 1.2 | 7.0x107 | 1.5 0.135 | 0.045 | 1.33 0.37
BH-4(2) | 250 | 1.0 ]| 05 |7.0x107 | 1.8 | 040 | 0.06 | 1.55 | 0.462

formulation. The viscoplastic constitutive model parameters used for the simulation are

presented in Table 11.6. To be consistent with the elasto-plastic simulation, it was

assumed that M =1.0, €54 = 0.0, ysar = 12.58 kKN/m’ and k = 6.9x10”° m/day.
Preconsolidation pressures peo were obtained from laboratory test results (see Table 11.2).

In the prediction of the laboratory consolidation test data and subsequently, the
secondary (creep) settlement of the phosphatic waste clay, the viscous flow function ¢(f)
(see (6.4a), (6.4b)) was normalized as follows

N
<p(f)=[ / ] (11.1)

2Pc,n

where p.n is the converged preconsolidation pressure at the previous load step n. Use of a
power function for ¢(f) did a better job matching the laboratory axial strain rate profile
than an exponential function. Tables C.1 to C.4 show that the contribution of the
secondary settlement to the total settlement for a sustained load increment in laboratory

consolidation tests is significant (on average ranging from 8% to 15%). In order to ensure

a higher contribution of viscoplastic strain £'P  the yield function f was normalized
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adaptively with p, rather than a constant value so that product term yo(f) of (6.2)
remains small resulting in a yield condition.

Also notice that the compressibility parameters A and « for the viscoplastic model
are slightly lower, thus resulting in a higher hardening modulus ® = 1/() - x) (see
(5.24),), than in the elasto-plastic model, even though both formulations produced
similar stress-deformation responses (compare between Tables 11.3 and 1 1.6). This
phenomenon can be explained from analytical expressions of incremental strain in the
plastic regime, since the hyperelasticity responses are identical for both the constitutive
models. Incremental volumetric plastic strains are given by the following expressions for
the viscoplastic and elasto-plastic MCC models, respectively (see (6.3) and (5.29), for

reference).

AeP = Av@(f)gp—{ = Ayop(fX2p-p¢)- (11.2a)

AeP = A(p%];— = Ap(2p-p¢). (11.2b)

For the same stress level, i.e., for a given value of p, Ayo(f) of (11.2a) is consistently
lower than Ag of (11.2b). Now, in order to produce similar value of incremental

volumetric plastic strain, (Pc)vicoplastic < (pc)elasto-plastic; (Ap/ pc)vicoplastic <(Apd/ pc)elasto-plastic-

Consequenﬂy, (A- K)viscoplastic <(A- K)elasto-plastic (see (5.24)).

11.4 FE Mesh
Due to the variability of the depths of the clay slime deposit (see Figures 11.9 and
11.10), three different pond depths: 2.44m, 4.57m, and 7.62m (8 ft, 15ft and 25 ft), were

selected for FE meshes. Surcharge area no.2 had thicker slime deposit ponds then
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surcharge area no.1 (compare Figures 11.9 and 11.10). Accordingly, a 7.62 m deep pond

was selected for simulation of field data of the settlement cells located in surcharge area
no.2. 2.44 m and 4.57 m deep ponds represented the slime deposits of surcharge area
no.l. Tables 11.7 to 11.9 list the settlement cells and plates (see Figures 11.7 and 11.8 for

their locations) that were represented by FE meshes of different pond depths.

Table 11.7 Settlement cells/plates represented by 2.44 m deep pond

Cell/Plate Station Offset Max. Surcharge
No. No. Height (m)
SC-5 1732+50 100'R 7.16
SP-23 1729+00 45'R 8.20
SP-33 1739+00 0 6.37
SP-37 1743+50 45'L 6.04

Table 11.8 Settlement cells/plates represented by 4.57 m deep pond

Cell/Plate Station Offset Max. Surcharge
No. No. Height (m)

SC-9 1740+50 50'R 6.58
SC-11 1743+00 70'R 6.52
SC-13 1745+00 80'R 6.55
SP-36 1742+00 0 6.40
SP-38 1743+50 45'R 6.52

~ SP-39 1745+00 0 6.55

Table 11.9 Settlement cells/plates represented by 7.62 m deep pond

Cell/Plate | Station Offset | Max. Surcharge
No. No. Height (m)
SC-17 1772+50 130R 8.23
SC-18 1772+50 130'L 8.35
SC-20 1775+00 120'L 7.89
SC-21 1777+50 120'L 7.68
SC-23 1778+00 100'L 8.08
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The meshes, comprised of axisymmetric D9P4 elements, are shown in Figure
11.17. Left vertical boundaries of the meshes are exposed to wick drains and so are
subject to prescribed hydrostatic pore water pressures. The equivalent diameter of the
cylinder of soil around each drain, shown in Figure 11.16, in the case of a triangular
installation pattern (see Figure 11.5) is calculated as D = 1.06s = 1.61 m [94], where s is
the spacing of the wick drain ( = 1.52 m). The equivalent diameter of the wick drain, d. is
calculated as d. = 2(B + t)/n = 6.56 cm [94], where B and t are the width and thickness of
the wick drains, respectively. B =10 cm, t = 0.3 cm for the wick drains used in the field.
Accordingly, the radial distance of the left vertical boundaries of the meshes from the
axis of symmetry is 3.28 cm (equivalent radius of wick drains). Bottom edges are
assumed to be rigid, impervious while the top edges are subject to free drainage. Meshes
are subdivided in four layers of materials to take into account the variability of material
properties with depth, e.g., preconsolidation pressure, shear strength, etc. Layers of

elements of any mesh are of equal height.
Wick drains

N 5 N

\ Pore water

migration

Figure 11.16 Schematic of contributive cylinder of soil surrounding
wick drains
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11.5 Prediction of Primary Consolidation

Material properties used for the prediction of primary consolidation are presented

in Tables 11.10 to 11.12 for the different pond depths. Constitutive model parameters

such as: py, a, A, K, po are obtained from Tables 11.3 to 11.5. The top layer of the meshes
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(height ~ 0.6 m) was assumed to be slightly overconsolidated due to dessication. As a
result, Lo and peo have higher values for the top layers. Values of preconsolidation
pressure, peo are estimated from Table 11.1. Notice that Table 11.1 shows lower Pcos
higher initial void ratio and higher C, than those in Table 11.2. This is because the tests
reported in Table 11.1 were performed before the slime deposits were subjected to
increased overburden pressure either due to the placement of the surcharge load or
fillings during the land reclamation process. Compare the boring logs in Figures 11.1 and
11.2. Consequently, pe values reported in Table 11.1 represent true estimates of the

maximum past preconsolidation pressure of the slime deposits. For all the simulations,

both large and small strain, it was assumed that 330 = 0.0 and the initial value (for large

strain) of the saturated unit weight, Y5 = 12.58 kN/m?. Coefficients of permeability were

assumed to be constant: k, =k, = 6.9x107° m/day.

Table 11.10 Material parameters for hyperelastic-plastic consolidation

(pond depth 2.44 m)

Parameter Layer 1 Layer 2 Layer 3 Layer 4
Lo (kPa) 25.0 25.0 25.0 35.0
o 1.0 1.0 1.0 1.0
A (large strain) 0.3 0.3 03 03
K (large strain)  0.06 0.06 0.06 0.06
A (small strain) 0.18 0.18 0.18 0.18
K (small strain) 0.05 0.05 0.05 0.05
M 1.0 1.0 1.0 1.0
po (kPa) 1.2 0.8 0.8 0.8
peo (kPa) 40.0 37.5 35.0 40.0
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Table 11.11 Material parameters for hyperelastic-plastic consolidation

(pond depth 4.57 m)
Parameter Layer 1 Layer 2 Layer 3 Layer 4
to (kPa) 25.0 25.0 25.0 35.0
o 1.0 1.0 1.0 1.0
A (large strain) 0.3 0.3 0.3 0.3
K (large strain) 0.06 0.06 0.06 0.06
A (small strain) 0.18 0.18 0.18 0.18
K (small strain) 0.05 0.05 0.05 0.05
M 1.0 1.0 1.0 1.0
po (kPa) 1.5 1.0 1.0 1.0
_Peo (kPa) 50.0 42.5 37.5 40.0

Table 11.12 Material parameters for hyperelastic-plastic consolidation

(pond height 7.62 m)

Parameter Layer 1 Layer 2 Layer 3 Layer 4
po (kPa) 25.0 25.0 25.0 35.0
o 1.0 1.0 1.0 1.0
A (large strain) 0.3 0.3 0.3 03
K (large strain)  0.06 0.06 0.06 0.06
A (small strain) 0.18 0.18 0.18 0.18
¥ (small strain)  0.05 0.05 0.05 0.05
M 1.0 1.0 1.0 1.0
po.(kPa) 1.5 1.0 1.0 1.0
Peo (kPa) 60.0 47.5 37.5 40.0

The surcharge load of sand was placed in steps over approximately 305 days and
kept for about 180 days before unloading. Based on the existing surface elevation,
surcharge height varied for locations of different settlement cells/plates. The maximum
surcharge height (see Tables 11.7 to 11.9) varied within a range of 6.1 m to 8.23 m (20 ft

to 27 ft); an average value of 7.32 m (24 ft) was selected for the numerical simulation.
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Unloading of surcharge was done in a short period of time followed by reloading due to
placement of the pavement. In the simulations, unloading was assumed completed within
48 days, kept for 32 days before the placement of pavement. The roadway construction
period was estimated to be 48 days.

Figures 11.18 to 11.20 present the small strain and large strain primary
consolidation predictions for the different pond depths. Note that the small strain
formulation predicted higher settlement than the large strain formulation since the latter
uses natural strain. The thicker the clay deposit, the higher was the ratio of small strain
settlement to large strain settlement due to primary consolidation. Table 11.13 shows the

comparison of settlements at the end of 485 days, immediately before unloading.

SETTLEMENT DATA FROM POLK COUNTY EXPRESSWAY
Area 2: (04/06/96 - 11/13/97), Pond Height 2.44 m
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SETTLEMENT DATA FROM POLK COUNTY EXPRESSWAY
Area 1: (04/10/96 - 11/13/97), Pond Height 4.57 m
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The small strain solution predicted a slower rate of consolidation than the large
strain solution because the latter considered the reduction in length of the drainage path
resulting in faster excess pore pressure dissipation. Consider the 4.57 m pond for a given
time, e.g., 245 days (see Figure 11.19). Even though the small strain formulation shows
111.2 cm of settlement versus 99.2 cm for the large strain, the degree of consolidation

(assuming 100% primary consolidation at 485 days) for the small strain is 75.7%

(=111.2/146.9x100) versus 80% (=99.2/124.1x100) for the large strain. For all the ponds,
primary consolidation reached a steady-state condition at around 700 days followed by

elastic rebound during unloading. The large strain formulation did a good job predicting

the primary consolidation field results for different pond depths.

Table 11.13 Comparison of primary consolidation settlements at 485 days:
large strain versus small strain

Pond depth Psmall strain Prarge strain Psmall strain
(m) (cm) (cm) Plarge strain
2.44 77.8 70.0 1.11
4.57 146.9 124.1 1.18
7.62 206.1 155.8 1.32

Field piezometer pore pressure data are compared with numerical predictions. For
both the large and small strain simulations are conducted. Figure 11.21 shows the total
Cauchy pore pressures at node point A (see Figure 11.17) of the 4.57 m deep pond.
Piezometers PT-1 and PT-2 are represented by 4.57 m deep pond due to their location in

surcharge area no. 1. See Table 11.14 for locations of piezometers. For the large strain
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formulation, total Cauchy pore pressure, 6 js computed as gXirchhoff y , J being the

Jacobian at the Gauss integration point closest to node point A.

Table 11.14 Location of piezometers

Piezometer | Station Offset
No. No.
PT-1 1729+00 0
PT-2 1734+50 0
PT-7 1770+00 0
PT-8 1772+00 30'R
PT-10 1778+50 60'R
PT-11 1780+00 104'R

PORE PRESSURE DATA FROM POLK COUNTY EXPRESSWAY
Area 1: (4/24/96 - 3/30/97), Pond depth 4.57 m
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Similarly, piezometer data from PT-7, PT-8, PT-10 and PT-11 are compared with
predictions from the 7.62 m deep pond due to their locations at the site of deeper the
retention ponds, i.e., surcharge area no. 2 (see Tables 11.14, 11.8 and Figure 11.10).
Figure 11.22 presents the field data and numerical predictions. Total Cauchy pore
pressures are evaluated at node point B of the 7.62 m deep pond (see Figure 11.17).

6% is computed following the same technique as mentioned above.

PORE PRESSURE DATA FROM POLK COUNTY EXPRESSWAY
Area 2: (4/6/96-4/6/97), Pond depth 7.62 m
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Figure 11.22 Piezometer data versus prediction of total Cauchy pore pressure:
pond depth 7.62 m



157

6™ from the small strain prediction are higher value than the large strain

model; the ratio increases over time. This is due to the fact that the large strain
formulation updates geometry. So, as the mesh undergoes settlement, the increasingly

shorter drainage path results in a faster rate of excess pore pressure dissipation and lower
values of 6°**Y, This phenomenon is demonstrated in Figure 9.5 in the case of the one-

dimensional example.

11.6 Prediction of Secondary Consolidation

Secondary compression assists hydrodynamic lag from the beginning of the
consolidation process but becomes dominant after the excess pore pressures have
substantially dissipated. Actually there must be small excess pore pressures during
secondary compression to cause water to flow from the soil. However, secondary
compression proceeds very slowly and the velocity of flow is very small. Hence the
associated excess pore pressures are immeasurably small. Secondary compression (or
creep settlement) is a time-dependent phenomenon: the longer the clay remains under a

constant effective stress, the denser it becomes.

Material parameters used for the prediction of viscoplastic consolidation (both
primary and secondary) are presented in Tables 11.15 to 11.17. Hyperelasticity model
parameters such as py, o, po and viscoplasticity parameters such as y and N are obtained
from Table 11.6. Higher values of 1o and p¢o are used for the top layer of elements (layer
no.4 in Figure 11.17) assuming slight overconsolidation of the top layer. To be

consistent, same variations of i and peo as in Tables 11.10 to 11.12 are used for the



158

prediction of secondary consolidation. For all the ponds, it was assumed that £50=0.0

and the initial value of ys, = 12.58 kN/m>. Coefficients of permeability, k, and ky, are
assumed to have a constant value of 6.9x10”° m/day (an average value taken from

laboratory test result, see Figure 11.3). Figures 11.23 to 11.25 present the large strain

predictions of hyperelastic-viscoplastic consolidation for the different pond depths.

Table 11.15 Material parameters for large strain, hyperelastic-viscoplastic consolidation

(pond depth 2.44 m)

Parameter Layer 1 Layer 2 Layer 3 Layer 4
to (kPa) 25.0 25.0 25.0 35.0

o 1.0 1.0 1.0 1.0

A 0.3 0.3 03 0.3

K 0.05 0.05 0.05 0.05

M 1.0 1.0 1.0 1.0

po (kPa) 1.2 0.8 0.8 0.8

peo (kPa) 40.0 37.5 35.0 40.0

y 7.0x107 7.0x107 7.0x107 7.0x107
N 1.5 1.5 1.5 1.5

Table 11.16 Material parameters for large strain, hyperelastic-viscoplastic consolidation

(pond height 4.57 m)

Parameter Layer 1 Layer2 Layer 3 Layer 4
o (kPa) 25.0 25.0 25.0 35.0

o 1.0 1.0 1.0 1.0

A 03 03 0.3 0.3

K 0.05 0.05 0.05 0.05

M 1.0 1.0 1.0 1.0

po (kPa) 1.5 1.0 1.0 1.0

peo (kPa) 50.0 42.5 37.5 40.0

y 7.0x107 7.0x107 7.0x107 7.0x107
N 1.5 1.5 1.5 1.5
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Table 11.17 Material parameters for large strain, hyperelastic-viscoplastic consolidation

(pond height 7.62 m)

Parameter Layer 1 Layer 2 Layer 3 Layer 4
o (kPa) 25.0 25.0 25.0 35.0

o 1.0 1.0 1.0 1.0

A 0.3 0.3 0.3 0.3

K 0.05 0.05 0.05 0.05

M 1.0 1.0 1.0 1.0

po (kPa) 1.5 1.0 1.0 1.0

peo (kPa) 60.0 47.5 37.5 40.0

y 7.0x107 7.0x107 7.0x107 7.0x107
N 1.5 1.5 1.5 1.5
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SETTLEMENT DATA FROM POLK COUNTY EXPRESSWAY

Area 1: (04/10/96 - 11/13/97), Pond Height 4.57 m
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Monitoring of the field settlement was discontinued after approximately 700 days.
Consequently, creep settlement over long periods of time could not be compared with
numerical predictions. Figures 11.18 to 11.20 show that primary consolidation reaches
equilibrium stage immediately after the pavement construction. So it is fair to assume that
the settlement that occurs after road construction would be predominantly secondary
compression under a constant effective stress. Table 11.18 compares the creep
settlements that occurred over 3000 days for different pond depths. The deeper the clay
deposit, the higher the creep settlement and the longer it took to reach an equilibrium
stage. This phenomenon is self-explanatory. Column 3 of Table 11.18 presents time to

reach a rate of settlement negligibly small, in this case < 2mm/year.

Table 11.18 Comparison of creep settlements for different ponds

Pond depth | Creep settlement | Time to reach
equilibrium
(m) (cm) (day)
2.44 3.6 1760
4.57 7.3 2200
7.62 10.0 3000



CHAPTER 12
SUMMARY
This study involved the prediction of primary (consolidation and swell) and

secondary (creep) settlement of phosphatic waste clay, found at the construction site of
Polk County Expressway. Centrifugal modeling and tests were performed to study the
consolidation behavior of phosphatic waste clay. Central to this work was development
and implementation of large strain based consolidation model in finite element code in
order to predict both the laboratory and field data. Important findings from both

centrifuge modeling and numerical predictions are summarized below.

12.1 Centrifugal Tests

A series of centrifuge tests were performed at the University of Florida’s
Geotechnical Centrifuge Laboratory. Centrifugal modeling (see Chapter ) proved to be a
valid tool for the study of the consolidation behavior of phosphatic waste clays.

The use of vertical wick drains in phospahtic waste clay recovered from the Polk
County Parkway area has shown to have a successful effect on the rate and magnitude of
the consolidation process which also has been verified by the field monitoring.

The tests performed with different fractions of the full size of the wick drain,
resulted in decreasing magnitude of settlement with decreasing sizes of wick drains.

No clogging of the wick drains was observed during the centrifuge testing

program.
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12.2 Numerical Predictions

Laboratory consolidation test data were numerically simulated in order to obtain
constitutive model parameters which were subsequently used for prediction of field data.
Large strain model incorporates both material and geometrical nonlinearities. Material
nonlinearities were represented by modified Cam-Clay (MCC) models with necessary
modifications for large strain such as hyperelasticity and bilogarithmic compressibility
law. In order to simulate secondary compression response or creep settlement, a
hyperelastic-viscoplastic MCC model was developed based on Perzyna’s overstress
approach. Both large and small strain formulations were used for prediction. Large strain
approach is observed to do better job simulating the field data compared to small strain
solution. Following is the summary of important observations.

Stress-deformation response, i.e., void ratio versus log (applied pressure) curves
from one-dimensional laboratory consolidation tests were predicted using both the large
and small strain formulations. It is found that Cam-Clay model’s compressibility
parameters A, x are different from C,, C, (compression and swell indices, respectively) of
the consolidation test data (see Tables 10.3 and 10.4). This is due to different stress
paths; A, k are defined for isotropic or virgin compression loading while Cs, C; are
obtained from one-dimensional loading (stress path is Ko-condition). Also note in Tables
10.3 and 10.4 that the A and « for small strain are slightly different than those for large
strain to produce similar stress-deformation responses. Since the large strain model
updates geometry whereas small doesn’t, the stresses which are F/area (i.e., function of

geometry), will be different unless, the stiffness is adjusted.
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Though small strain formulation performed well predicting laboratory
consolidation test data its prediction of field settlement data was poor, whereas the large
strain model did good job for both laboratory and field. Note that small strain formulation
predicted higher settlement compared to large strain formulation since the latter uses
natural strain. The thicker the clay deposit, the higher was the ratio of small strain
settlement to large strain settlement due to primary consolidation.

Small strain solution predicted slower rates of consolidation than the large strain
solution because the latter considered reduction in length of the drainage path resulting
faster dissipation of excess pore pressure. Consider the 4.57 m pond for a given time,
€.8., 245 days (see Figure 10.19). The degree of consolidation for the small strain is

75.7% (= 111.2/146.9x100) versus 80% (= 99.2/ 124.1x100) for the large strain.

Total Cauchy pore pressure, 8™ predicted from small strain model was higher
than the same from large strain; the ratio increases over time. This is due to the fact that
large strain formulation updates geometry. So, as the mesh undergoes settlement,
increasingly less drainage path, i.e., faster rate of excess pore pressure dissipation occurs

resulting lower value of 9™,

The viscoplasticity model parameters y and N were obtained from numerical
simulation of laboratory consolidation test data. The proposed hyperelastic-viscoplastic
MCC model did an excellent job predicting the rate of axial strain from laboratory
consolidation tests which included both primary and secondary settlements.

Monitoring of the field settlement was discontinued at an early stage (around 700
days). Consequently, creep settlement over long period of time could not be compared

with numerical prediction. Large strain simulations with viscoplastic MCC model were
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run for a period of 3000 days in order to predict creep settlement. Table 10.18 compares
creep settlements which occurred over 3000 days for different pond depths. The deeper
the clay deposit, the larger the creep settlement and the longer it took to reach an
equilibrium stage (rate of settlement is negligibly small, e.g., < 2mm/year).

For thick clay deposit large strain formulation did a much better prediction than
small strain formulation due to geometry updating. As a result, large strain formulation is
recommended for low solid content clay (void ratio > 2) where large displacement (>10%

of initial thickness of deposit) is anticipated.




APPENDIX A
MATHEMATICAL DERIVATIONS
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A.l Gradient of the Jacobian, J

One can show from matrix algebra that if a(z) is a matrix of function z, then

(det(a)) = COF( ) | (A1)

where COF(aj) is (i, j)th cofactor of the element a;; of the matrix a. Therefore,

aiJi ={ai [;x(kj} COF(Fy ) = {azk [i ]} COF(E;, ) = 0. (A2)

x and X represent spatial and material coordinates of a point X in undeformed

configuration B, respectively.
Using the identity (A.2), one can obtain from (3.58) that grad n" = 0. Since n® +
n" =1, grad n° = 0. From (3.11), one can also derive that grad p = 0 knowing the fact that
grad p, = 0 (a0 = s, w). Putting together, an important corollary emanates from the
identity (A.2) as follows
gradJ = gradp = gradn® = gradn™ = 0. (A.3a)

In reference configuration B, gradient of J takes the form

0X
GRADJ =2 - O T _ (A.3b)
0Xj 8x 6X1
A.2 Balance of Energy of Saturated Soil
From (3.56), one can obtain the relation
W =nWe1, (A4)
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where 1 is the second order identity tensor. Now, localized balance of energy of soil-
water mixture in material form (3.61) can be rearranged as
Jpﬁ =t :d®+1V :dY =1*:d* +nV01:dY =15 :d°* +nVOdivvY.  (A.5)

Expanding the volume conservation equation (4.6) and using (A.3a), one can obtain

w

divvW = (1 - L) divv. (A.6)
n

Substituting (A.6) in (A.5), one can deduce

Jpﬁ =1°:4d° +nwe(1—Ldeiv vi=1%:d° +(1——1w—)nw91:gradvs
n n

=1°:d%+ 1——1— Vil =10 d% 4 1—L v d® (A7)
n" n"

=l:’ts +(1—LJTW}:dS =1:d°.
nw

A.3 Weak Form of DIVP +pyg =0

Weak or variational form of field equation of stress equilibrium (see (4.3)) can be

written as

_Ln -(DIVIN’ + pog)dV =0,

Py
:>L —- - +ponigi [dV =0. (A.8)
' oX
0 5.\ Oni.
dv =0.
= -[E{GXJ (Tl PJ) X 1J+Po111g1J

n is vector of virtual displacement as defined in (4.11). Using Green’s theorem, one can

write
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a D 14 — -~-- . pa— . -
L(Kj("ipil)JdV = _LBnIPUNJ dA= LﬁnltldA, (A.9)
where N is the unit outward normal to the surface 8B in reference configuration.

t=P-N is the traction vector prescribed on 9B. Substituting (A.9) in (A.8) yields

Lmt dA - _L( PIJ pomgljdV 0,

= L GRADn:P—pOn-g)dV— LBn-tdA=O.

(A.10)

(A.10) presents the weak form described in (4.12).

A.4 Weak Form of divv+divv =0

Weak form of the field equation of flow continuity (see (4.8)) can be written as

Lw(divv+divV)dQ=0,

= L( +\u——]dQ 0,

where y represents an arbitrary virtual pore pressure filed as defined in (4.15). Using

(A.11)

chain rule, one can write

av.
17 ad A.12
“'ax o (\uvl) grady -v. (A.12)

Substituting (A.12) in (A.11) yields

L\y—i dQ+ L{é—i—.(wvi)—gradw-V}dﬂzO,
1 5 (A.13)
= L(wdivv——grad\p-V)dQ+ La—Xi—(wi)dg=o.

Using Green’s theorem, one may obtain
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Laxii(wvi)dgz [w¥-ndr=-[yqdr. (A.14)

Here q=-V -n is the volumetric flow rate along the boundary I'* = ¢(6B") (see

(4.2b)); and q is positive when fluid is being supplied to the system. n is the outward unit

normal to the deformed surface I'. Substituting (A.14) in (A.13) yields
L(wdivv—gardw—?)dﬂ—.[_wqdl"=0. (A.15)

(A.15) represents variational form H(¢,IT,)=0 in spatial description (see (4.16)).

A.5 Area Transformation of Flow Rate

Push-forward of an infinitesimal area dI"e T in spatial configuration to dAe 6B

in material configuration follows the relation [56]

ndl = JN-FldA. (A.16)
N and n are the outward normals to the undeformed surface B and deformed surface I' =

d«(OB), respectively. F is the deformation gradient (see (3.44)). Multiplying both sides of

(A.16) by ¥ and exploiting the Piola identity V = JF~! . ¥, one can deduce the
following relation
~ ~ -1
- Vin;dI' = -—viJNiji dA

:qu’=—(JF_1 -v)ijdA (A.17)

= qdl'=-V-NdA =QdA,
where Q and q are the volumetric flow rates along per unit area of the boundaries

OB" « 6B and $«(8BM), respectively. See Section 4.2 for definitions of ¥, V,Qandq.
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A.6 Additive Decomposition of Principal Natural Strain

In the space of principal natural strain € € R’, deformation gradient matrix F can

be written as

A, 00
F={0 A, 0 (A.18)
0 0 A,

Aa’s are the stretches in principal directions. In matrix form, product decomposition of F
(see (4.27)) can be written as
e P oo oo
Ay 00 07 |25 0 o |

0 A 01=[0 25 00 A5 0 =a,=258; vAa=123 (A.19
0 0 A1 J0o 0 a5} o0 o A2

Taking the natural logarithms of (A.19) yields

(i, )=hS J+ (3B ) e, = +eP. (A.20)
A A A A A A

Trial elastic left Cauchy-Green tensor b&ir , defined in (4.41),, can be written in

following product form:
b = b8 £t = f(Fg(Fg)t)ft
= (fF,‘l= XfF,? )t = {an (F}l’ )_leFn (F}l’ )—l}t (A.21)
_ {F(Fg )‘1}{F(Fg )}

In the space of principal strains, b and Fg can be expressed in the following matrices:
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_ , -
xe’“) 0 0 - 1
( ! 2 Ma 00
A .t . _
b = 0 (}@ rj o |, FP=| o &, o a0
0 0 (7\%,'[1')2 0 O }\.g,n
Now, from (A.18) and (A.22),, one can write
%— 0 0
7‘1,n
-1
F(F}; j R T (A.23)
2P
2,n
0 0 _}‘_3_
_ Mn
Substituting (A.23) and (A.21) yields
e,tr Aa
Ayt =—2— VA=123. (A.24)
Man
Taking natural logarithms of (A.24) produces
m(xﬁ;tr) =y )- m(xﬂ,n) Sep =S 4ol . (A25)

A.7 Proof of Piola Identity: DIVY =J divy

Piola transform of vector y is given by Y = JF"'-y. Now DIV Y can be expanded

using chain rule as follows:
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DIVY:_.@_;(Yi)z_a_(JF.__lyj)z_a_ JaXi yj
0Xj oX; ' Y OXij{ ox;j

]
_O (X ), g0 () L oK
0Xi| 0x;j T X ; 7] ox j 6X; (A.26)
:J_a_[@)yj+ %j
ox;\0Xj X j
=Jdivy,

since GRAD J = 0 (see (A.3b). x and X represent spatial and material coordinates of a

point X € B, respectively. B is the undeformed, reference configuration.

A.8 Linearization of F, F!

Linearization of F and F'' is given by

LF=F+8F; LF'=F14§F" (A27)
Let du be the variation of the displacement field u. One can express variation of F as

d (x+edu) 0(8u) _0(8u) ox
dele_g OX X  ox oX

OF =

= grad du-F= GRAD 8u. (A.28a)

FF!'= d; & is the Kronecker delta. So, §( F-Fl) =0; F-85F' = - 8F. F\. One can write

F-F! = —(gradu-F)-F! = —grad Su

(A.28b)
= 8F ! =—F! .gradSu=-F! .GRAD&u -F!.

Substituting (A.28a) and (A.28b) in (A.27), one can deduce to (7.3a) and (7.3b).
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A.9 Linearization of J, J

Linearization of J, J is given by
LI=J+8]; LI=J+8l. (A.29)

In order to expand (A.29), one needs to obtain expressions for 8J, 8J. Variation of J, 8J

can be written as

s7=1 et F(x +&du)=—
de|,_, dej._ oX

_ [ d d(x +£8u)
de|,., X

= (grad Su),, Fy; COF(F; )

= (grad Su),, Fy; COF(F;; )+ (grad 5u),, Fy; COF(Fy;) (A30)

doereeeenenes + (grad 5“)nn Fy COF(Fnj )

= J{(grad 8u),, + (grad Su)yy + oo +(grad 5u),_ }
=Jdivdu

d det( Ax+e Su))
e=0

} : COF(F) = (grad 5u - F): COF(F)

Now J =8J/6t = J div (ou/dt) = J div v. So, 8] = 8(J div v) = J8(divv) + 8] divv.

8(divv) = S(GRADV :F‘t)

=5(GRADV):F~t + GRADV :F !

. (A.31)
=GRADGSV :F ! —GRADV:(F_t -grad6u)
=divdv-gradv: gradt ou.

From (A.30) and (A.31), one can write expression for 8J as

8J = J[div(av) — grad v : grad® (5u) + div(Su) div v]. (A.32)
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A.10 Linearization of py

Lpg =pg +8pg = po +5(Ip). (A.33)
Using the relation (3.48), one can derive
8(Jp) = p6]+J6{pS(1—nw)+ pwnw}
=pdJ+J(pw —ps)n™
=pdJ+J(pw —ps)ﬁ{l—(l —n(‘))v)J—l
= p8T +J(pyy —ps)(l—n(‘;v)J‘zaJ

=pwdJ
= pwJ div(dn).

(A.34)

dps = 6pyw = 0, since solid and fluid phases are assumed incompressible.

A.l11 Relation between Tensors A and D

By definition (see Section 7.2.1),

aPij _d

ijkl = i Fkl(FimSmj)

(A.35)

Cap =FaFcp (cf. (3.59)). Taking derivative of C yields,

oC 0
Zab _ "_(FcaFcb)= Fia6p1 + Fkbdal- (A.36)
oF1  OFy

Substitution of (A.36) in (A.35) results Ajjkl = 2FjmFin Dmjnl +818ik , since Dijn =

Dujin.
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A.12 Relation between Tensors a and d

Using (7.12), (7.15a), (7.15b) and the relation © = F-S-F', expression of spatial

tangential elasticity tensor a can be rearranged as follows:

ajjkl = FimFnAimkn
= FjmFin {2Fia FkbDambn + Smndik }
= 2Fa FimFkbFinDambn + (ijFlnSmn )6ik
= dijkl + 719k -

(A.37)

So,a=d+1t®1.

A.13 Spectrai Decomposition of b, C

Left and right Cauchy-Green tensors, b and C, respectively, are isotropic tensor

functions since the transformations

Q-f(b)-Qt=f(Q-b-Qt); Q-f(C)-Qt=f(Q-C-Qt) (A38)
holds for all orthogonal tensors Q. Let f(b) = b™2, m need not be restricted to integer

values. Spectral decomposition of f(b) then takes the form
' 3
f(b)=b™/2 = 3 AMp A @p®), (A.39)
A=l
where A, and n¥, respectively, are the eigenvalues and eigenvectors of the left stretch
tensor V =b'2, Following the representation theorem [95], f(b) in a space € R® may be

expressed as a polynomial in b with scalar coefficients which are functions of the

invariants of b:

f(b) =51+ 8,b+5,b>. (A.40)
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Here &y, 81, and &, are functions of the principal invariants of b given by

I =te(b), I,= [112 —tr(bz)], I; = det(b). (A.41)

Consider b and hence f(b) as diagonalized, permitting the substitution of b and b™2 with

their corresponding principal values, 7& and A , respectively, then (A.40) yields

f(kz) 8o +8AT + 8,0 =A™,
f(xz) 8o + 805 +8,0% =T, (A.41)
f(}éé): 8o +8,A3 +8,0% = AT,

In case distinct eigenvalues, (A.41) has a unique solution for &g, §;, and &, given as

f!xz )1 A2 f!}? !!xz ~1 ) 3 f{xz )
50=Z AL37A s 1 52=ZDA, (A.42)
A=1 A A=1 A

where D, =21} —12% + ;172 Substituting (A.42) in (A.40), one can obtain the
A A 1/VA 3NMVA

following expression

3 2 _( a2 ) -2
bm/2=Z}\,§ b Il }\‘A b+I3}\. 1 . (A43)
4 -
A=1 2}\, —IIXA +I3}\,
The eigenvalues A4’s are solutions of the characteristic polynomial

pAa)=-2% +I2% -In% +10%4 =0 vA=123. (A.44)

The equation has the solutions

/2 0+ 2no 12
M=z 11+2( —312)l cos( : ) VA =123, (A.45)

where
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6 = cos—) 213 - 91,1, + 271,

(A.46)
5 /2
2 (Il =3I, )3
Comparing (A.43) with spectral representation of (A.39), one can write
2 _( a2 ) -2
n® @@ P Tl ZAa)brIALL (A.47)

2% -1 + 10
An analogous representation for C™? follows from the above procedure. For

general case of distinct eigenvalues, spectral decomposition of C takes the form

3
C= Y 2AN® @N@), “N(A)” =1 (A.48)
A=l

since C is symmetric positive definite tensor i.e. C e Si . M® of (7.13) is defined as
M®) = 2 2N@ @ NA), (A.49)
where like (A.47), the product term N ® N can be obtained as

N(A) ® N(A) _ }\34 C- (Il - 7\3«)1 + 13}\,;\2(3_1
2% ~1A% +1,052

VA =123 (A.50)

If A1 = A3 # A3, it can be easily deduced from (A.39) and (A.47) that

bm/2=x‘1“+(x‘§‘—ﬂ’{b2_(Il_k%)bﬁﬁgzl : (A51)
2% — 1,03 + 15452
while
b™/2 =My, (A.52)
if A=A = As.
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A.14 Derivation of 0g,/0C

Differentiation of (A.48); gives

[2x AdA,NA @ NA) 432 (dN(A) QN L NW @ dN(A)) (A.53)

M

dC =
A=l

Contracting dC with N @ N yields

3 3

N (A)}_ A (A)
ZdC.{N SN =3 dCyNe N
A=l A=1

3
=y [2x adhy (NgA)NgA)) (NSA)NEA)) (A.54)
A=l

2 NN ) (NN |, (v faveone )
1 1 ] J 1 1 ] ]
From (A.48), N§A>N§A) =1.So, d(N§A)N§A>)= 0 or N§A>dN§A) = 0. Substituting these
identities in (A.54) produces

dC: {N(A) ®N(A>}= 2hpdA

= dC:A5MWN) 224, dh (A.55)
= a}VA = lA-AM(A)
oC 2

Since €4 = In (A4), one can obtain

%a _ 1y (A.56)
aC 2

A.15 Derivation of 5M“)/8C

From (A.49) and (A.50), M® can be written as

C—(I1 - xﬁ)n ;3 ,2C™!
Dy

M®) =

(A.57)
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where D, = 24 - IIKZA +AL = (XZA - 7\.%3 X?»ZA - kzc) {A,B,C} denotes an even

permutation of the indices {1,2,3}. I; and [; are invariants of C, defines as

I =t[Cl= 22 +2 +33; Tj =det[C]=2A7503. (A.58)
Now,
(A)
oM™~ _ _1_{92 _ M @ Pa } (A.59)
8C D, loC aC

where u=C— (Il - K?A)l + I3XA C™!.Consider (A.59) by parts. First, ouw/0C can be

expanded using the chain rule as

3“-:1—1®§I—1+2x 104 - 2C—1®613
3~—1 A -2
—ACT @A R

I is the fourth order identity tensor defined as Ijjk] = %[SikS jl +9i19 jk] .

5 1
(I 1 ) ! /6Ck1 > [C k‘ch +C, llCJk] In order to expand (A.60) to lowest

order, one would need expressions for 61;/0C, 0l3/6C and OAa/0C.

9y (A.61a)
oC
A - 0 (4et(Conn )} = 22 COF(Cypn)
aC ac oCk1
COF(C (A.61b)
=13————( rnll)=13c;11 =1,C7.

I3
See (A.55) for OA4/0C. Substituting (A.55), (A.61a) and (A.61b), one can rewrite (A.60)

as
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9“-:1-1®1+x11®M(A>+13x;20‘1®c“
(A.62)
—LAACTT OMWY — 1R
Next, consider 6D A/0C.

s ., My ., 0yl
A LD, A2 DL 7203 A.63
oc A oec Thac A aC (A.63)

where D)y =81} —2I;L, —2I;1 . Upon substitution of (A.55) and (A.61a), (A.61b)

takes the form

a;)—CA =-;-D;\>VAM(A) -2 1+1;3.2C7L (A.64)

M®
0 - 1®1+1 v2leTlec -1 4
3NMA
oC D, ¢

+-Dl—[xi (1®M(A) +M® ®1)—%D'Ax AM®) ®M(A):l (A.65)
A

—-—L[I3x;2 (C‘l MW L MA) ®c‘1)].
DA

A.16 Push Forward of 9M™)/8C

Push forward of all the indices of SM™/5C yields d® as given by (7.17). In tenor

form dgﬁﬁ =Fa FijkcFldéM;‘;) /8C¢q. Consider push forward of each of the fourth

order tensors on the right hand side of (A.65). Following expressions can be obtained.

Rer Hrsard -+ o e |
FaFjbFkcFldlabed =5[{Fichk }{Fdedl +\FidF g (\FjeFg 60
a
1
= g(bikb ji +bitbjk )= (b )y
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t
FiaFjbFkcFiddabded = {Fibej }{deFfﬂ }= bijbki- (A.66b)

—1pt
FiaFjbFicFldC o Cog = {F,ac ngJ}{chcc dFdl}

(A.66c)
= {FC“lFt }ij{Fc‘lFt }k1= 8ijBKl -

1 1 t
FiaFjbFiccFld (o1 )ppoq = “2‘[{Fiacachk }{FjbcbdFdl
gt Yoo a-igt ]
+{F1a adFdl}{FJbechk} (A.66d)
1
= 5(511(8 il + 8118k )= Lijkt-
t
FiaFjbFicFiddabMyy = {Fleb }{chMc d)F§1}= bjjm{%. (A.66¢)

FlaFijkCFldMab O¢d = m( bl (A.66f)

t At
FiaFjbFic FlAM MY d)—{*r“laM(‘?3 Fbj}{Fk MY d>Fd1} (A) m{}). (A.66¢)

FiaFijkcFldc;{)Mg’g={F1ac FL. }{FkCM Ft} sym{Y.  (A.66h)

ab' bj cd 'dl kl
Fi, Fip FiFigM4c ! —m(A)S (A.661)
iaFjbrketld™Map Y cd kl-

Now, substituting (A.66a) to (A.66i) would yield push forward of SM“/8C in

tensor form as follows

M)
a
Ced

451 = FiaFjbFieFid
=—1——[(I Yoor 1 - bisbd + IsAa2 (3581 — L )]
D, bJijkl 7 P ki + 1344 \9ijOkl — Lijkl

1 2( (A) _ (A ) 1 (A) (A)]
+——1 22 b:m™® + m®byg |- =Dy A mim
DA[ A\Pjj ij k757 A%A

(A.67)

ki

1 [ —2( (A) ., _(A) )]
—— 1A% B;m m:. '8 .
D, L3"a Vi +my; Okl
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A.17 Variation of k, K

Permeability tensor k varies with the void ratio e, or equivalently with the
Jacobian J. Using chain rule variation of k can be expressed as

_ ke sy K %E o). (A.68)
oe 81 de ol

ok
Expression of 8J is substituted from (7.4a). Assuming incompressibility of the solid

phase, Jacobian J can be expressed as a function of void ratio given by

v _l+e

V l+eg

(A.69)

where v and e are the volume and void ratio of soil-water mixture, respectively, in spatial

configuration with corresponding values in reference configuration being V and ey. Now,

0e/0) =1 + eo. Substituting 5e/dJ in (A.68) yields 8k = (1 +e)J div (Su)dk/de.

K is the pull-back permeability tensor defined as K =F ! -k .F~!. Variation of

K takes the form 6K =6F ! .k -F '+ F 1.5k .- F~t + F~1.k.5F . Substituting SF'
and Ok from (7.3b) and (7.31), respectively, yields

5K = —F~'-GRADSu-F~L -k-Ft +(1+ey)Tdiv(su)F 1.2 Ft

~F'.k.F'.GRAD! 6u-F!
= 2F ! ~{%(GRAD8u-K-Ft +F-K-GRAD! Su)} Ft (A.70)
+(1+e)T div(du)F ! .%E.F—t
(]
-1 t -1 & |OK| -t
=—F " 2Sym|{GRADSu K -F' |- (1+¢o)DIV(IF ™" -8uf—-F
c

K is symmetric since k is assumed symmetric for most practical purposes.
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A.18 Variation of grad 0
8(grad6) = 6( ae.J = 5[ ® X J
\5x j 0Xj 0x j
_o(3) o
¥

(A.71)

=74 " §F
5xJ oX; U

From (5.3b), 8F' can be expressed in tensor form as ) —%?—@u—k) (A.71) can
y Oxk OKj

then be rearranged as
5(50) 90 8(duy)

oxj Oxk Oxj (A.72)
= grad (86) — grad © - grad(Su)

8(grad 0) =

A.19 Variation of Jv

Variation of JV is given by 8(Jv) =8JV + J&V. Using the expressions of 8J and

8(grad 6) from (A.30) and (A.72), respectively, one can expand 8(JV)as

5(W)=51{-k-(grade+§j}+Ja{-k-(§ﬂ+§]}
Jgpw 8 Jgpw 8

=_k.[6Jgrad6+8J§]_ Ik .[Jﬁ(grade)—&grade:l AT)
Jeow 8] gPw 12

—Sk{grade +J—g—-’
gPw &
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= —8Jk-§——k—~6(grad9)—6k-[gr—w——e—+ Jg]
g 2Pw w8

= Jdiv(su)k -8 ~ X §{grad(56) - grad® - grad(Su)} - ok - {gr—adg + JE}
g 2w 2w g

-k _[grad(SG)— grad 0 - grad (Su) . Jdiv(6u)§}
gPw g

—(1+e0)Jdiv(6u)—a£-[M+J§}.
Oe | g8Pw 8

A.20 Variation of grad n:

Variation of grad n: 7 of takes the form

8(gradn:1)=8(GRADdn:P)
=GRADd : 5P = GRADdn : 5(F -S) (A.74)
= GRADdn :(5F -S + F - 58).

Since 7 is vector of arbitrary virtual displacement, &n = 0. See Section 3.5.3 for relations
among P, T and S.

First, consider expansion of F- 8S. From the expression of D (see (7.14)), one can
write 8S = D 8C, or in tensor form 8S;; = Djjy8Cu. Using (3.59) and (7.3a), 8C can be

expanded as follows

6Cijj =8 (Fk1 Fkj ) = 8FkiFij + FkiSFk;
= (grad du)y | Fi;Fij + Fij (grad u)y o, iy (A.75)
= 2FiFk;j(grad du)y.

Collecting the expressions for 38 and 6C, one may obtain following expansion for F- 8S
(F-88);; = Fik8Skj = Fik Dkjmn {2FamFon (grad 8u) 5 (A.76)

Substituting (A.76) and (7.15b), it can be derived as
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GRADn : 8(F -8S) = (GRADn);; (F - 89);

= (grad n);¢ FejFik Dijmn {2Fam Fon (grad 8u) ., }

= (gradn);, QFik FciFamFbn Dkjmn fgrad u)yp, (A7)
= (grad n)lc dicab (grad 6u)ab
=gradn:d: grad du.

Next, consider expansion of 8F- S. Substituting (7.3a) and (3.57), one may obtain
following tensor expansion:
(8F - S)ij = SFik Skj
= (grad du);; Fix ﬁrgl;rmnr.t (A.78)

= (grad Su); SlmenFj_nl-

Then, using (A.78) following contraction with GRAD n is possible.
GRADn :(8F -S) = (GRAD n)ij (3F - S)ij

= (gradn)y Fij(grad Su); Sim Ty

= (grad )y {ijFj"nl Yerad ) Simeomn

= {(grad )y kn H(erad 8u);; 81 Jromn (A.79)
= {(grad n);j Sn H(grad )y 81 rmn

= (gradn);,, Tmn (grad du);

= (grad n)ij {T 1j8ki }(grad du)y

=gradn:(t®1):graddu

Substituting (A.77) and (A.79) in (A.74), one can write variation of grad n: t as

8(gradn:1)=gradn:(d+t®1):graddu. (A.80)
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A.21 Variation of GRAD n: P

Following (A.74), variation of GRAD n: P of can be written as
8( GRADd™n : P)= GRADdN :(3F - S + F - 8S). (A.81)
First, consider expansion of F-8S. From the expression of D (see (7.14)), one can write
F-6S = F-(D 8C), or in tensor form (F-8S);j = FixDyjmn&Cumn. Using (3.59) and (7.3a), 6C
can be expanded as follows

.82

Substituting (A.82), one can further expand F-8S as

(F-8S);; = Fik Dijmn {(GRAD8u), 1 Fap + Fam (GRADSU), . }
=Fjk {ijmn +Dkjnm }(GRADSu)am Fan
= 2FixDijmn (GRAD8u), Fap
= {2 FiaDajb1Fkb }(GRAD du)y >

(A.83)

sinc€ Dyjmn = Dyjmn. Next, consider the following expansion of 3F-S.

(8F - S)ij = 8Fj Sk
= (GRADBu ), Sij (A.84)
= (GRADSu )y S1;0ki -

Now substituting (A.83), (A.84) and (7.12), in (A.81), one can obtain

3(GRADdn :P)=(GRADn )ij(SF-S+F-SS )ij
= (GRADn); {2FiaDajbiFicb + S1jBki ( GRADSu )y
=(GRADn )iinjkl( GRADGu )iy
= GRADn: A : GRADGdu.

(A.85)

(A.80) and (A.85) are equivalent expressions since both are obtain from variation of same

quantity i.e. GRAD n: P. Following push forward of (A.85) would prove that.
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8(GRADN : P) = (GRAD" );; {2 Fia DgjbiFich + S1jBki { GRADSu )y
=(gradn ); Fg; {2 FiaDajblFkb + S1j0ki K gradsu )ied Fdl
= (gradn );, {2F;, FejFicbFdiDajbl + FejS1dkiFdl { gradu Jkd
t (A.86)
= (gradn )i 4 2Fja FojFkbFdiDajbl + FojS j1F)4 ik 1 graddu )y g
&——W_._J

Tcd

= (gradn )ic {dickd + TcdSik } graddu )i g
=gradn:(d+1t®1):graddu.

See (7.15b) for push forward of D to d. (A.80), (A.85) and (A.86) can be combined to

following equivalent expressions

8(gradn:1)=8(GRADnN:P)

=gradn:(d+7®1):graddu = GRAD1: A : GRADSu. (A.87)
A.22 Variation of grady - Jv
Expansion of §(grady - JV) takes the form
d(grady - W) = 8(grad y)- ¥ + grad y - § (J¥). (A.88)
Following the same derivation of §(grad 0) (see Section A.18), one may obtain
8(grad y) = —grad y - grad(Su), (A.89)

since oy = 0.
Substituting 3(grad y), Jvand 5(J¥) from (A.89), (7.37b) and (7.37¢),

respectively, one can expand (A.88) as
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8 {(grad v); (°9);}

(grad 0).
= {- (grad y)y (grad Su)y }{‘ kij{ g; ~)J ' égj]}
(grad 86) ) —(grad 0); (grad 3u),, +idiv(5u)gm}
Pwg 8

ki {(grade)j +Jﬂ}

—(grad W)ikim{

—(1+e¢)T div(Su)(grad y);
Jde | pweg g

ki ki
= —(grad y); =™ (grad 86) ,, + {(grad v); m; (grad 6); (grad du); .,

Pwg Pw
ki J
+(grad )y Ej—g*(grad 8);(grad du)y; } + {(grad Wi (rad Bu)y kije -

] (A.90)
—(grad \V)k diakam gm —div(Su)
“*f'—’k g

m

Ok mj
—(1+eg)(grad y); T div(Su)dim p
e

(grad®); g
J 4 Jg—J
Pwg g

= ;grad\p ——l—(——— -grad 86
Pwg

t
+2 (grad\y)i—l- L-gradtSu +| graddu - k (grad®).
2|\ pwe i Pwe ) ]

+{grad\y .| grad Su - (divéu)1]-k -EJ}
g

~A
—(1+eo)grad\p-(Jdiv(au)l)ﬂ‘--{gr“—”enﬁ}
O (pwg 8

= —grady B grad 66 + 2{ grad y Sym(L ‘ gradtSuj . grade}
Pw§g Pwg

+ { grady - [ grad Su —(div8u)l]'k-§J}
g

)
Pwg g

-1+ eo)gradw-(Jdiv(Su)l)-g—le(-{
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A.23 Variation of GRADy -V

5(GRADy - V)= GRADy -8V since 8y = 0. Substituting (7.27) and (7.28),

GRADv -8V can be expanded as

GRADw-5V=—GRADw-8K-[GRADO+IFt --g-)

gPw g (A91)

GRADS® _(pry (L ulft + JGRADtSu)--gj .

—GRAD\V-K-[
gPw g

Substituting expression of 8K from (7.30), one may obtain

GRADW-SK-(GRADGHF‘-E)

gPw g
=-2GRADy -F! -Sym(GRADSu-—K—-Ft)-F't .GRAD®

EPw (A.92)

~2GRADy -F™! ‘Sym(GRADSu'K-Ft)-JE
g

+(1+e))GRAD y -F ! -DIV(JF“ -em)g—"-lr‘t -(9——I°‘M+mt --g-].
Ge gPw g

Second term of (A.92) can be further expanded as
g

2GRADy -F! .Sym(GRADsu-K-Ft)-J—
g

= GRADy -F~! -(GRADSu-K-Ft +F-K-GRAD! au)-JE (A.93)
g

— GRADy -F~!.GRADSu-K -F' .72 + GRADy ‘K -GRAD' 5u-J&
g g

Substituting (A.92) and (A.93) in (A.91) yields



191

GRADy -8V = ~GRADy - —%_.GRADS0

gPw
+2GRADy -F ! -Sym(GRADau~L-Ft]-F“t .GRAD®
gPw
+GRADy -F~! .GRADSu-K-F' .78 (A.94)
g
_GRADy K DIV(IF™" -u)Ft . 8
g

—(1+ey)GRADy -F! -DIV(JF‘1 -Su)(zls-F"t -{M+JFt E}
Oe PwEg g

A.24 Hand Calculation of One-dimensional Large Strain, Hyperelastic Consolidation

For the large strain example of one-dimensional hyperelastic (axisymmetric)

consolidation (see Section 9.2)

0 By
e=|e, |,  B=|P, |- (A.95)
0 By

€ and P are the vectors of principal natural strains and principal effective Kirchhoff
stresses, respectively. Subscript 1 represcats radial and circumferential directions while

subscript 2 represents the vertical direction. Using (5.3) one can obtain
2
Ey =€, Eg= —3—82. (A.96)
From (5.6), Kirchhoff stresses can be expressed in terms of stress invariants as

2
By =p——;l, B, =p+7q. (A.97)

Stress invariants p and q can be obtained from the derivative of free energy function ¥

given by
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v o¥

\ S
See (5.38) for the expression of W in case of isotropic, linear elasticity. Substituting

(A.98) in (A.97), B, can also be written as
4p
B2 =|K+~Je2 =Dey. (A.99)

D is the constrained modulus. At steady-state condition Jacobian J is constant throughout
the height of the soil column, so is B since B2 =1J AG©®™), For one-dimensional
constrained compression J = A; A, being the principal stretch in vertical direction i.e. the
ratio of the final to initial column height. Equivalent expressions for B, yield B, = Dg; =
D In(Az) = Aq™™,. Unknown quantity A, can now easily be obtained from the

following equation
£(1,) = Ag(CauhY)y . _Dn(r,)=0. (A.100)
For this example, D = 134.7 kPa, Aq©™™ = .90 kPa. Plugging these values in (A.100),

one can obtain A; = 0.6484.
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Matrices for D9P4 axisymmetric elements, discussed in Chapter 8, are given in
the following.

(a) Interpolation matrices:

¢ N ¢
co NP0 Ng o N$ o | B
0 N;b 0 Ng) ...... 0 Ng)
o IN o N9 o NO o N® o
NO - 5 5 5 ol (B.2)
o N o N% o NO o N

N e R>8 N® ¢ R¥S, N? 's(i=1,2,...,9) and N? ’s (j = 1,2,3,4) are biquadratic

displacement interpolation functions and bilinear pore pressure interpolation functions,
respectively. See any reference book of finite element for the interpolation function in
natural coordinates &, | € [-1,1] (see Figure 9.1).

(b) Strain-displacement transformation matrix:

B=[B, B, B; - By]e R>*18 (B.3)
where
L _
L o
x
oN?
0 S
A oy
Bi=| N o | (B.4)
r
oN?
R 0
oy
on?
0 1
I x
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9
x, y are spatial coordinates in R? space. Radius r in (B.4) is interpolated as r = ZN?xi.
i=1
Volumetric counterpart of B matrix is defined as
b={}'B, {}={1 1 1 0 0}, (B.5)
b=[b, b, by---bg]leR>?E, (B.6)
Here
aN? N¢ on?
b; =| —+-4 LI (B.7)
0x r Oy
(c) Gradient-pressure transformation matrix:
0 0 0
o, o, et
E= 0 N 0 (B.8)
0 Ny 0 Ny .. 0 Ny
oy oy
(d) Material stiffness matrix:
(diinr dize duss dyz dun |
B dynr dazzz dasz dapi doox
D=|d33; dssn dizzz dize diany (B.9)

dip;1 diazz dizzz diziz dioa

_d2111 d2122 d2133 cl2112 d2121_

Components of D are obtained directly from fourth-order tensor d of (7.16).
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(e) Initial stress matrix:

T11 0 0 Ti2 0
0 Ty 0 0 T12
T=|0 0 13 0 0 (B.10)

0 T12 0 0 Tll_

(f) Pore pressure matrix:

10000
01000

Ig=6%0 01 0 0 (B.11)
00001
000 1 0







APPENDIX C
LABORATORY CONSOLIDATION TEST DATA
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Boring No. BH-4(2), Load = 1.0 tsf

0.0340 & oo
0.0380 -
0.0420
0.0460
0.0500 -
0.0540 -
0.0580
0.0620

0.0660 |

0.0700 -------------- Secondary
0.0740 + __y Settlement

0.0780 oot
0.1 1 10 100 1000 10000

Primary
Settlement

Dial Reading, in

Elapsed Time, min

Figure C.1 Primary and secondary settlement from laboratory consolidation data

Table C.1 Settlement Data from Consolidation Test Results (Boring No. BH-1A)

Load Total Primary Secondary Primary Secondary
Settlement Settlement Settlement Settlement  Settlement
(tsf) (in) (in) (in) (%) (%)
0.5 0.0202 0.018 0.0022 89.11 10.89
1.0 0.0292 0.0289 0.0003 98.97 1.03
2.0 0.0613 0.053 0.0083 86.46 13.54
4.0 0.0801 0.0744 0.0057 92.88 7.12
8.0 0.084 0.0753 0.0087 89.64 10.36
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Table C.2 Settlement Data from Consolidation Test Results (Boring No. BH-2)

Load Total Primary Secondary Primary Secondary
Settlement  Settlement  Settlement  Settlement  Settlement
(tsf) (in) (in) (in) (%) )
0.25 0.00736 0.00648 0.00088 88.04 11.96
0.5 0.01814 0.01324 0.0049 72.99 27.01
1.0 0.0408 0.0341 0.0067 83.58 16.42
2.0 0.0809 0.0683 0.0126 84.43 15.57
4.0 0.1077 0.0937 0.014 87.00 13.00
8.0 0.0989 0.0897 0.0092 90.70 9.30

Table C.3 Settlement Data from Consolidation Test Results (Boring No. BH-3)

Load Total Primary Secondary Primary Secondary
Settlement Settlement Settlement Settlement  Settlement
(tsf) (in) (in) (in) (%) (%)
0.5 0.0098 0.0089 0.0009 90.82 9.18
1.0 0.0294 0.026 0.0034 88.44 11.56
2.0 0.0669 0.0606 0.0063 90.58 9.42
4.0 0.096 0.083 0.013 86.46 13.54
8.0 0.0982 0.0877 0.0105 89.31 10.69

Table C.4 Settlement Data from Consolidation Test Results (Boring No. BH-4(2))

Load Total Primary Secondary Primary Secondary
Settlement Settlement Settlement Settlement  Settlement
(tsf) (in) (in) (in) (%) (%)
0.5 0.0195 0.0175 0.002 89.74 10.26
1.0 0.0433 0.0366 0.0067 84.53 15.47
2.0 0.0972 0.0869 0.0103 89.40 10.60
4.0 0.105 0.0978 0.0072 93.14 6.86
8.0 0.1033 0.0935 0.0098 90.51 9.49
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